TY - CONF A1 - Pelkner, Matthias A1 - Pohl, Rainer A1 - Erthner, Thomas A1 - Stegemann, Robert A1 - Kreutzbruck, Marc A1 - Sergeeva-Chollet, N. T1 - Eddy current testing with high-spatial resolution probes using MR arrays as receiver N2 - Magneto-resistive (MR) sensor arrays are suited for high resolution eddy current testing (ET) of aerospace components due to two significant advantages compared to conventional coil systems. First, to obtain high spatial resolution they can be manufactured down to the µm-regime without losing their outstanding field sensitivity. Secondly, MR technology has a relatively frequency-independent sensitivity in the range of common ET-frequencies thus providing a benefit for low frequency applications. This paper presents measurements using MR array probes consisting of 32 TMR-elements (tunnel magneto resistance), an ASIC, and subsequent readout components. A source for generating the eddy currents inside the material under test is also implemented onboard of the PCB. These probes were developed in the IMAGIC-project* for detection and imaging of surface breaking defects. The performance of the new sensor system has been investigated for several mock-ups, Aluminum and Titanium plate specimens having small adjacent boreholes with diameter of 0.44 mm and micro notches in the µm-range, respectively. To compare our results we used conventional eddy current probes. The MR sensor elements have a length of around 60 µm leading to a nearly 'point like' measurement. Neighbouring boreholes (depth 0.25 mm) with a separation of 0.6 mm between their centres could be resolved with a good SNR, and more important, the boreholes could be confidently distinguished using the TMR-probes. In case of conventional probes a reliable separation was not possible. In this paper we present the MR-ET-probes of the IMAGIC consortium and a comparison with conventional techniques. *The IMAGIC-project ('Integrated Magnetic imagery based on spIntronics Components', 2011 – 2014, project reference: 288381) was funded by the European Commission, Seventh Framework Programme. Further partners involved in the consortium beside BAM and CEA were INESC-ID and INESC-MN (Portugal), Sensitec GmbH (Germany), Tecnatom S.A. (Spain), and Airbus Group (France). T2 - 7th International symposium on NDT in aerospace CY - Bremen, Germany DA - 16.11.2015 KW - TMR KW - GMR KW - Sensor array KW - Eddy current testing (ET) KW - Aerospace PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-344254 SN - 978-3-940283-76-4 N1 - Serientitel: DGZfP-Proceedings – Series title: DGZfP-Proceedings IS - DGZfP-BB 156 SP - We.5.A.4, 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.v. (DGZfP) AN - OPUS4-34425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -