TY - CONF A1 - Rack, T. A1 - Zabler, S. A1 - Rack, C. A1 - Stiller, M. A1 - Riesemeier, Heinrich A1 - Cecilia, A. A1 - Nelson, K. T1 - Coherent synchrotron-based micro-imaging employed for studies of micro-gap formation in dental implants T2 - 10th International conference on X-ray microscopy (AIP conference proceedings) N2 - Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process. T2 - 10th International conference on X-ray microscopy CY - Chicago, Illinois, USA DA - 15.08.2010 KW - X-ray imaging KW - Dental implants KW - Digital radiography KW - Implant-abutment interface KW - Synchrotron radiation KW - X-ray phase contrast PY - 2011 SN - 978-0-7354-0925-5 DO - https://doi.org/10.1063/1.3625398 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings VL - 1365 SP - 445 EP - 448 AN - OPUS4-25347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rack, A. A1 - Weitkamp, T. A1 - Zanette, I. A1 - Morawe, C. A1 - Vivo Rommeveaux, A. A1 - Tafforeau, P. A1 - Cloetens, P. A1 - Ziegler, E. A1 - Rack, T. A1 - Cecilia, A. A1 - Vagovic, P. A1 - Harmann, E. A1 - Dietsch, R. A1 - Riesemeier, Heinrich T1 - Coherence preservation and beam flatness of a single-bounce multilayer monochromator (beamline ID19-ESRF) JF - Nuclear instruments and methods in physics research A N2 - Larger spectral bandwidth and higher photon flux density are the major advantages of multilayer monochromators over crystal-based devices. Especially for synchrotron-based hard X-ray microimaging applications the increased photon flux density is important in order to achieve high contrast and resolution in space and/or time. However, the modifications on the beam profile induced by reflection on a multilayer are a drawback which can seriously harm the performance of such a monochromator. A recent study [A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduna, P. Cloetens, E. Ziegler, J. Synchrotron Radiat. 17 (2010) 496–510] has shown that the modifications in terms of beam flatness and coherence preservation can be influenced via the material composition of the multilayer coating. The present article extends this knowledge by studying further material compositions used on a daily basis for hard X-ray monochromatization at the beamline ID19 of the European Synchrotron Radiation Facility. KW - Multilayer mirrors KW - X-rays KW - X-ray optics KW - Coherence KW - X-ray monochromators KW - X-ray imaging KW - X-ray phase contrast KW - Synchrotron radiation PY - 2011 DO - https://doi.org/10.1016/j.nima.2010.11.069 SN - 0168-9002 SN - 0167-5087 VL - 649 IS - 1 SP - 123 EP - 127 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-25240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vila-Comamala, J. A1 - Diaz, A. A1 - Guizar-Sicairos, M. A1 - Gorelick, S. A1 - Guzenko, V.A. A1 - Karvinen, P. A1 - Kewish, C.M. A1 - Färm, E. A1 - Ritala, M. A1 - Mantion, Alexandre A1 - Bunk, O. A1 - Menzel, A. A1 - David, C. ED - Morawe, C. ED - Khounsary, A.M. ED - Goto, S. T1 - Characterization of a 20-nm hard X-ray focus by ptychographic coherent diffractive imaging T2 - Advances in X-Ray/EUV optics and components VI (Proceedings of SPIE) N2 - Recent advances in the fabrication of diffractive X-ray optics have boosted hard X-ray microscopy into spatial resolutions of 30 nm and below. Here, we demonstrate the fabrication of zone-doubled Fresnel zone plates for multi-keV photon energies (4-12 keV) with outermost zone widths down to 20 nm. However, the characterization of such elements is not straightforward using conventional methods such as knife edge scans on well-characterized test objects. To overcome this limitation, we have used ptychographic coherent diffractive imaging to characterize a 20 nm-wide X-ray focus produced by a zone-doubled Fresnel zone plate at a photon energy of 6.2 keV. An ordinary scanning transmission X-ray microscope was modified to acquire the ptychographic data from a strongly scattering test object. The ptychographic algorithms allowed for the reconstruction of the image of the test object as well as for the reconstruction of the focused hard X-ray beam waist, with high spatial resolution and dynamic range. This method yields a full description of the focusing performance of the Fresnel zone plate and we demonstrate the usefulness ptychographic coherent diffractive imaging for metrology and alignment of nanofocusing diffractive X-ray lenses. T2 - SPIE Optics and photonics CY - San Diego, USA DA - 20.08.2011 KW - X-ray imaging KW - Diffractive X-ray optics KW - Electron beam lithography KW - Ptychographic coherent diffractive imaging PY - 2011 DO - https://doi.org/10.1117/12.893235 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE VL - 8139 SP - 81390E-1 EP - 81390E-7 AN - OPUS4-24613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -