TY - CONF A1 - Heyn, A. A1 - Müller, Thoralf A1 - Balzer, M. A1 - Fenker, M. A1 - Kappl, H. T1 - Korrosionsschutzmechanismen bei TiMgN-Hartstoffschichten auf Stahl N2 - Die Präsentation behandelt ein abgeschlossenes DFG Projekt welches die Fragestellung um das Korrosionsverhalten von TiMgN-Hartstoffschichten beleuchtet. Am Beginn des Vorhabens und in dessen weiterem Verlauf standen zahlreiche Ergebnisse die belegen, dass durch den Einbau von Mg in TiN-Hartstoffschichten das Korrosionsverhalten der beschichteten Stahlproben verbessert wird. Es gilt vorab festzuhalten, dass durch die TiMgN-Schicht eine großflächige Abschirmung des Stahls vor dem umgebenden Medium gegeben ist. Jedoch liegt bei nicht auszuschließenden Defekten bis zum Stahl, bedingt durch die Herstellung und/oder dem späteren Gebrauch, eine Gefährdung durch lokale Korrosion vor. Bei Kontakt mit wässriger, chloridhaltiger Lösung benetzt die Oberfläche und verbindet die TiMgN-Schicht über die Defekte mit dem dort freiliegenden Stahlsubstrat über den Elektrolyten. Zur Wirkungsweise des Korrosionsschutzes durch Mg in TiMgN konnten zum Ende des Vorhabens drei grundsätzliche Mechanismen identifiziert werden. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Korrosion KW - Hartstoffschichten KW - PVD KW - Magnesium KW - TiN PY - 2018 AN - OPUS4-44538 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heyn, A. A1 - Müller, Thoralf A1 - Balzer, M. A1 - Fenker, M. A1 - Kappl, H. T1 - Korrosionsschutzmechanismen bei TiMgN-Hartstoffschichten auf Stahl N2 - Die Präsentation behandelt ein abgeschlossenes DFG Projekt welches die Fragestellung um das Korrosionsverhalten von TiMgN-Hartstoffschichten beleuchtet. Am Beginn des Vorhabens und in dessen weiterem Verlauf standen zahlreiche Ergebnisse die belegen, dass durch den Einbau von Mg in TiN-Hartstoffschichten das Korrosionsverhalten der beschichteten Stahlproben verbessert wird. Es gilt vorab festzuhalten, dass durch die TiMgN-Schicht eine großflächige Abschirmung des Stahls vor dem umgebenden Medium gegeben ist. Jedoch liegt bei nicht auszuschließenden Defekten bis zum Stahl, bedingt durch die Herstellung und/oder dem späteren Gebrauch, eine Gefährdung durch lokale Korrosion vor. Bei Kontakt mit wässriger, chloridhaltiger Lösung benetzt die Oberfläche und verbindet die TiMgN-Schicht über die Defekte mit dem dort freiliegenden Stahlsubstrat über den Elektrolyten. Zur Wirkungsweise des Korrosionsschutzes durch Mg in TiMgN konnten zum Ende des Vorhabens drei grundsätzliche Mechanismen identifiziert werden. T2 - Forschungsseminar des MDZWP e.V. CY - Magdeburg, Germany DA - 13.03.2018 KW - Korrosion KW - Hartstoffschichten KW - Magnesium KW - PVD KW - TiN PY - 2018 AN - OPUS4-44527 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Thomas A1 - Vierneusel, B. A1 - Gradt, Thomas A1 - Tremmel, S. A1 - Wartzack, S. A1 - Szücs, Z. A1 - Arendt, I. T1 - Optimierte MoS2-PVD-Schichten für wechselnde Umgebungsbedingungen N2 - Der Festschmierstoff Molybdändisulfid ist insbesondere für Extremanwendungen ein gerne eingesetzter Werkstoff, problematisch ist jedoch der negative Einfluss von Feuchtigkeit. Bei mittels PVD-Verfahren abgeschiedenen MoS2-Schichten ergibt sich jedoch die Möglichkeit, durch Anpassung der Beschichtungsparameter vorwiegend basal ausgerichtete Schichten herzustellen, die auch an Luft ein verbessertes tribologisches Verhalten zeigen. N2 - The solid lubricant molybdenum disulfide is a well known material for extreme conditions, but Problems arise due to a negative effect of humidity. However, by using a PVD process, deposition parameters can be optimized to gain coatings with a more textured structure orienting the basal planes parallel to the Substrate surface. Therefore, an improved tribological behavior even under moist conditions can be achievcd. KW - MoS2-coatings KW - PVD-process KW - Tribology KW - Moisture KW - Cryogenic temperatures KW - MoS2-Beschichtungen KW - PVD KW - Tribologie KW - Luftfeuchte KW - Kryogene Temperaturen PY - 2013 SN - 0724-3472 VL - 60 IS - 4 SP - 18 EP - 23 PB - Expert Verlag CY - Renningen AN - OPUS4-29995 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe T1 - Plasmabeschichtungsverfahren - eine Übersicht N2 - Einleitend wird eine kurze Einordnung der Plasmaverfahren innerhalb der Beschichtungstechnologien vorgenommen. Die vielfältigen Möglichkeiten der Plasmaverfahren werden an Hand von Beispielen zu Sehichtfunktionalitäten, Produktemund:Anlagenkonzepten, erläutert. Es wird aufgezeigt, dass die Plasmaverfahren industriell angewandte Nanotechnologie sind und branchenübergreifend eine Schlüsseltechnologie darstellen, die in der Verschränkung mit der Nanotechnologie noch ein enormes Zukunftspotenzial aufweist, und; für alle Kernbranchen des Wirtschaftstandortes Deutschland unverzichtbar sind. Dieser Aufgabe widmen sich in Deutschland unter dem Dach von PLASMA Germany insbesondere die EFDS in Dresden und INPLAS in Braunschweig. Der in Cannes prämierte INPLAS-Film »Plasma leuchtet ein«, der unter Federführung des FhG IST in Braunschweig entstand, zeigt auf, in wie vielfältiger Weise die Plasmatechnik schon heute unseren Alltag bestimmt. T2 - BMBF-Innovationsforum - Schützen und Veredeln von Oberflächen CY - Wildau, Germany DA - 28.02.2012 KW - Funktionelle Schichten KW - Plasmabeschichtung KW - PVD KW - PECVD PY - 2012 SP - 37 EP - 40 AN - OPUS4-26944 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Manier, Charles-Alix T1 - Slip-rolling resistance of novel Zr(C,N) thin film coatings under high Hertzian contact pressures N2 - Heutzutage sind Beschichtungen in breiten technologischen Anwendungsfeldern von Dekorierungszwecken bis zur Verbesserung der Leistung von Werkzeugen in der Massenfertigung, von medizinischen Werkzeugen oder noch von Computer Bestandteilen und vielen Anderen verbreitet. Besonders rechnet die Automobilindustrie mit einem Leistungsgewinn bei der Verwendung von Dünnschichten in mechanischen Bauteilen des Antriebstranges und des Getriebes. Das auf einer kostengünstigen Alternative basierte Konzept ist die Leistungssteigerung durch Erhöhung der Tragfähigkeit durch Aufbringung von Dünnschichten, die zu zusätzlichen Eigenschaften beitragen könnten, ohne das Design der Bauteile grundlegend zu verändern. Es würde auch einen Weg in Richtung Downsizing darstellen. In der vorliegenden Arbeit ist eine kurz gefasste Literaturübersicht bezüglich der Wälzbeständigkeit von verschiedenen Dünnschichten zusammengestellt. Bei der Durchführung von Wälzversuchen sind kristalline Zr(C,N) Dünnschichten als wälzbeständig nachgewiesen worden und zwar bis zu einer mittleren Hertzschen Kontaktpressung von P0mitteln = 1,94 GPa (P0max = 2,91 GPa) bei 120°C in Erstbefüllungsmotoröl bis zu zehn Millionen Zyklen. Grundsätzlich stellt dieses Ergebnis hier eine Verdoppelung der auf die Oberfläche wirkenden Normalkraft gegenüber unbeschichteter Kontaktkonfiguration dar, die herkömmlich mit gebrauchsfertig formulierten Ölen (d.h. mit hohem Anteil an Additiven) geschmiert sind. Typischerweise bestehen die zu beschichtenden Substrate aus vergütetem Lagerstahl Cronidur 30. Die Zr(C,N) Dünnschichten sind mittels verschiedenen Untersuchungsmethoden charakterisiert worden, um die Ursachen festgestellter Ergebnisunterschiede bezüglich der Wälzbeständigkeit unter diesen hohen tribologischen Beanspruchungen zu klären. Die Wälzbeständigkeit verschiedener Beschichtungschargen ist mittels eines festgelegten, leistungsfähigen Prüfverfahrens evaluiert worden. Verschiedene Standzeitergebnisse sind zwischen den einzelnen Chargen erreicht worden, ohne wesentliche Änderungen bei den Abscheidungsprozessen vorzunehmen. Die durchgeführte Charakterisierung stellt mikrostrukturelle Unterschiede fest, die die Wälzbeständigkeit beeinflussen und als Ursache der Wälzverhaltensunterschiede der Zr(C,N) Dünnschichten sein können. Außerdem ist die Leistung der Zr(C,N) Dünnschicht nicht nur im Bezug auf die Steigerung der Wälzbeständigkeit sondern auch hinsichtlich des tribologischen Einflusses (u. a. Nachwirkungen auf den Verschleiß und die Reibung) bewertet worden. Darum wurden die tribologischen Ergebnisse mit den entsprechenden gemessenen Größen von unlängst entwickelten DLC-Dünnschichten (DLC, Diamond Like Carbon) verglichen, die auch bei der gleichen Prüfprozedur getestet worden sind und gleiche Überrollungszahlen erwiesen hatten. N2 - The present work was carried out within the framework of my four years activities as a scientific co-worker in the Working Group Tribological Optimization; Failure Analysis; Extreme Exposure in the division Tribology and Wear protection (VI.2) of the BAM Federal Institute for Materials Research and testing in Berlin, Germany and generously funded by the German Research Foundation (DFG WO521/6-1). First of all, I would like to express my sincere thanks to my supervisor Dr.-Ing. Mathias Woydt, head of the aforementioned working group, who gave me the opportunity to start my professional development, initiated and intensively supported this PhD work as well as accepted to take part in thesis committee. Prof. Dr. rer. nat. Walter Reimers, Chairman of the Institute for Materials Science and Technology of the Technical University of Berlin (TU Berlin), is also gratefully thanked for his interest in the thesis subject, for helpful comments and suggestions as well as for agreeing to participate in the referee of this work. I would like to thank also Prof. Dr.-Ing. Claudia Fleck, Chairman of the Material Engineering Department (Fachgebiet Werkstofftechnik) of the Technical University Berlin (TU Berlin), for assuming the chairmanship of the thesis committee. All the staff of the tribology division is also greatly acknowledged for bringing a pleasant working environment. Dr. Dirk Spaltmann is particularly thanked for the helpful discussions as well as for his assistance in English formulation. Dipl.-Ing. Manuel Reichelt and my bureau colleague Dr.-Ing. Géraldine Theiler will find here my many thanks for promoting constantly a good working atmosphere. Sigrid Binkowski and Dipl.-Ing. Norbert Kelling are also gratefully acknowledged for their constant and helpful technical support. André Otto is also thanked for his substantial administrative support. My sincere thanks go to Dr. rer. nat. (and “by the way” world and olympic champion in eights rowing) Ilona Dörfel (BAM V.1, Composition and Microstructure of Engineering Materials) for performing the highly relevant TEM investigations as also Heidemarie Rooch, and Ing. Wolfgang Gesatzke for the specific preparation of the samples. Furthermore, I greatly appreciate the contributions of Dr.-Ing. Vasile-Dan Hodoroaba, Birgid Strauß, Sigrid Benemann and Dipl.-Phys. Thomas Wirth (BAM VI.4) for their valuable contributions in microscopy analysis and to Dr.-Ing. Eric Wild (TU Berlin) for the substantial residual stress analysis of the coatings. Acknowledgement is also due to Dr. Thomas Chudoba from ASMEC GmbH for performing hardness measurements with his QCSM module. Thanks are surely extended to Fundación Tekniker, specifically Josu Goikoetxea and Dr. Javier Barriga for the manufacturing of the coatings in industrial deposition chambers and to the machining shop BAM Z.5 for the specimens preparation. Last, but by no means the least, I would like to thank all my friends for their support and to all the people who helped me directly or indirectly in my doctoral work and/or for my pleasant German adaptation. My very special thanks (du fond du coeur) go to my beloved parents Marie-Hélène (What is Tribology?) and Gérard (I miss you so much) and “of course” to my bright (and sometimes nerve-racking) sister Sophie, for everlasting encouragement and plenty of good advices in a wide range of domains. Ania, especially for your contribution in the decision of pursuing my “German experiment”. T3 - BAM Dissertationsreihe - 60 KW - Dünnschichte KW - multilayer KW - Wälzbeständigkeit KW - Zr(C, N) coating KW - Multilayer KW - PVD KW - Slip-rolling resistance PY - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-987 SN - 978-3-9813550-3-1 SN - 1613-4249 VL - 60 SP - 1 EP - 138 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-98 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -