TY - CONF A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Laquai, René A1 - Nellesen, J. A1 - Tillmann, W. A1 - Kasperovich, G. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Microstructure characterisation of advanced materials via 2D and 3D X-ray refraction techniques N2 - 3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in an Al/Al2O3 metal matrix composite during tensile load and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity’s like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography and tomography. T2 - THERMEC'2018 CY - Paris, France DA - 09.07.2018 KW - X-ray-refraction KW - Damage evolution KW - Additive manufacturing KW - Composites KW - Creep PY - 2018 AN - OPUS4-45572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Günzel, Stefan A1 - Metzkes, Karoline T1 - Degradation mechanism of short-fibre reinforced polyamide due to unaxial fatigue loading evaluated by non-destructive testing and fractography N2 - The damage process of short glass fibre (30% weight) reinforced polyamide caused by mechanical loading was investigated from the beginning on micro cracking level to the incipient crack of mm-dimension. Based on high resolution computer tomography and the X-ray-refraction technique the inner surface due to micro-cracking at the short fibre ends and the fibre matrix debonding of the skin surface of the filament was determined quantitatively. With the knowledge of the fatigue crack propagation rate and fracture toughness of the material from former research projects, it was derived that the total inner surface due to micro cracks measured by X-ray refraction is much higher than the specimen could have withstand the load, supposed the surface is in a localized crack. Hence, the damage process could be described from micro to macro level. Accompanying fractographic investigations endorse the modelling based on the NDT-techniques. T2 - International Conference of Fatigue of Composites ICFC 6 CY - Paris, France DA - 25.03.2015 KW - Damage evolution KW - Fracture mechanics KW - Crack propagation KW - PA-GF30 KW - X-ray-refraction KW - Fractography PY - 2015 AN - OPUS4-38778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -