TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, Christian A1 - Ziegler, Mathias T1 - Thermographic testing using 2D pseudo-random illumination and photothermal super resolution reconstruction N2 - Due to the diffusive nature of heat propagation in solids, the detection and resolution of internal defects with active thermography based non-destructive testing is commonly limited to a defect-depth-to-defect-size ratio greater than or equal to one. In the more recent past, we have already demonstrated that this limitation can be overcome by using a spatially modulated illumination source and photothermal super resolution-based reconstruction. Furthermore, by relying on compressed sensing and computational imaging methods we were able to significantly reduce the experimental complexity to make the method viable for investigating larger regions of interest. In this work we share our progress on improving the defect/inhomogeneity characterization using fully 2D spatially structured illumination patterns instead of scanning with a single laser spot. The experimental approach is based on the repeated blind pseudo-random illumination using modern projector technology and a high-power laser. In the subsequent post-processing, several measurements are then combined by taking advantage of the joint sparsity of the defects within the sample applying 2D-photothermal super resolution reconstruction. Here, enhanced nonlinear convex optimization techniques are utilized for solving the underlying ill-determined inverse problem for typical simple defect geometries. As a result, a higher resolution defect/inhomogeneity map can be obtained at a fraction of the measurement time previously needed. T2 - Thermosense: Thermal Infrared Applications XLIV CY - Orlando, FL, USA DA - 05.04.2022 KW - Thermography KW - Super resolution KW - NDT KW - Material testing KW - Internal defects KW - DMD KW - DLP PY - 2022 AN - OPUS4-54667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Thermographic Detection of Internal Defects using Photothermal Super Resolution Reconstruction and 2D structured Illumination Patterns N2 - For a long time, the rule of thumb for active thermography as a non-destructive testing method was that the resolution of internal defects/inhomogeneities is limited to a ratio of defect depth/defect size ≤ 1. This is due to the diffusive nature of thermal conduction in solids. So-called super resolution approaches have recently allowed this physical limit to be overcome many times over. This offers the attractive possibility of developing thermography from a purely near surface-sensitive testing method to one with improved depth range. How far this development can be pushed is the subject of current research. We have already been able to show that this classical limitation for one- and two-dimensional defect geometries can be overcome by illuminating the test object sequentially in a structured manner with individual laser spots and thus subsequently calculating a defect map from the resulting measurement data by applying photothermal super resolution reconstruction, which allows significantly improved separation of individual closely spaced defects. As a result, this method benefits strongly from the combination of sequential spatially structured illumination and modern numerical optimization methods, which come at the expense of higher experimental complexity. This leads to long measurement times, large data sets, and tedious numerical analysis, in contrast to the application of established standard thermographic methods with homogeneous illumination. In this work, we report on the application of full-area spatially structured two-dimensional illumination patterns, which, by applying state-of-the-art laser projector technology in conjunction with a high-power laser, makes it possible to achieve an efficient implementation of photothermal super-resolution reconstruction even for larger test areas in the first place. T2 - 13th European Conference on Non-destructive Testing CY - Lisbon, Portugal DA - 03.07.2023 KW - Thermography KW - Super resolution KW - Digital light processing KW - Material testing KW - Internal defects KW - DMD PY - 2023 AN - OPUS4-57909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Nondestructive defect characterization using full frame spatially structured super resolution laser thermography N2 - Laser-based active thermography is a contactless non-destructive testing method to detect material defects by heating the object and measuring its temperature increase with an infrared camera. Systematic deviations from predicted behavior provide insight into the inner structure of the object. However, its resolution in resolving internal structures is limited due to the diffusive nature of heat diffusion. Thermographic super resolution (SR) methods aim to overcome this limitation by combining multiple thermographic measurements and mathematical optimization algorithms to improve the defect reconstruction. Thermographic SR reconstruction methods involve measuring the temperature change in an object under test (OuT) heated with multiple different spatially structured illuminations. Subsequently, these measurements are inputted into a severely ill-posed and heavily regularized inverse problem, producing a sparse map of the OuT’s internal defect structure. Solving this inverse problem relies on limited priors, such as defect-sparsity, and iterative numerical minimization techniques. Previously mostly experimentally limited to one-dimensional regions of interest (ROIs), this thesis aims to extend the method to the reconstruction of twodimensional ROIs with arbitrary defect distributions while maintaining reasonable experimental complexity. Ultimately, the goal of this thesis is to make the method suitable for a technology transfer to industrial applications by advancing its technology readiness level (TRL). In order to achieve the aforementioned goal, this thesis discusses the numerical expansion of a thermographic SR reconstruction method and introduces two novel algorithms to invert the underlying inverse problem. Furthermore, a forward solution to the inverse problem in terms of the applied SR reconstruction model is set up. In conjunction with an additionally proposed algorithm for the automated determination of a set of (optimal) regularization parameters, both create the possibility to conduct analytical simulations to characterize the influence of the experimental parameters on the achievable reconstruction quality. On the experimental side, the method is upgraded to deal with two-dimensional ROIs, and multiple measurement campaigns are performed to validate the proposed inversion algorithms, forward solution and two exemplary analytical studies. For the experimental implementation of the method, the use of a laser-coupled DLP-projector is introduced, which allows projecting binary pixel patterns that cover the whole ROI, reducing the number of necessary measurements per ROI significantly (up to 20x). Finally, the achieved reconstruction of the internal defect structure of a purpose-made OuT is qualitatively and qualitatively benchmarked against well-established thermographic testing methods based on homogeneous illumination of the ROI. Here, the background-noise-free twodimensional photothermal SR reconstruction results show to outclass all defect reconstructions by the considered reference methods. T2 - Öffentliche wissenschaftliche Aussprache an der Technischen Universität Berlin CY - Berlin, Germany DA - 31.10.2023 KW - Thermography KW - Super resolution KW - NDT KW - Material testing KW - Internal defects KW - DMD KW - DLP PY - 2023 AN - OPUS4-58771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -