TY - CONF A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Studemund, T. A1 - Ziegler, Mathias T1 - Thermal Wave Interference with High-Power VCSEL Arrays For Locating Vertically Oriented Subsurface Defects N2 - Among the photothermal methods, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers, or to find inhomogeneities such as voids or cracks. The use of classical light sources such as flash lamps (impulse heating) or halogen lamps (modulated heating) led to a variety of nondestructive testing methods, in particular lock-in and flash-thermography. In vertical cavity surface emitting lasers (VCSELs), laser light is emitted perpendicular to the surface with a symmetrical beam profile. Due to the vertical structure, they can be arranged in large arrays of many thousands of individual lasers, which allows power scaling into the kilowatt range. Recently, a high-power yet very compact version of such a VCSEL-array became available that offers both the fast timing behavior of a laser as well as the large illumination area of a lamp. Moreover, it allows a spatial and temporal control of the heating because individual parts of the array can be controlled arbitrarily in frequency, amplitude, and phase. In conjunction with a fast infrared camera, such structured heating opens up a field of novel thermal imaging and testing methods. As a first demonstration of this approach, we chose a testing problem very challenging to conventional thermal infrared testing: The detection of very thin subsurface defects perpendicularly oriented to the surface of metallic samples. First, we generate destructively interfering thermal wave fields which are then affected by the presence of defects within their reach. It turned out that this technique allows highly sensitive detection of subsurface defects down to depths in excess of the usual thermographic rule of thumb, with no need for a reference or surface preparation T2 - QNDE 2017 CY - Provo, Utah, USA DA - 17.07.2017 KW - Thermal Wave KW - Photothermal KW - Active Thermography KW - VCSEL KW - Subsurface Defect PY - 2017 AN - OPUS4-41078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Studemund, Taarna A1 - Ziegler, Mathias T1 - The VCSEL-Array - a Novel High-Power Light Source for (Photo) Thermal Imaging N2 - Within the field of optically excited thermography, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers or to find inhomogeneities such as voids or cracks. Classical light sources, such as flash lamps (impulse heating) or halogen lamps (modulated heating), are hereby specifically used. This has led to the different testing methods lock-in and flash thermography. The VCSEL array promises to merge these excitation methods. Vertical Cavity Surface Emitting Lasers (VCSELs) are laser diodes emitting light perpendicular to their surface. Due to the vertical structure they can be arranged in large arrays of many thousand individual lasers and still be controlled like ordinary diode lasers. Recently a high-power albeit very compact version of such a VCSEL-array became available which offers both the fast timing behavior of lasers and large illumination areas. Moreover, it allows a spatial and temporal control of the heating because individual parts of the VCSEL-array can be controlled arbitrarily in frequency, amplitude, and phase. Although the VCSEL-array has a high potential for a new range of applications, it is too early to proclaim them. As one out of very few labs, we already adopted to this new VCSEL technology and show a thorough characterization and first results obtained with a 2.4 kW device. Specifically, we will discuss - the linearity between control voltage and optical output - the minimal pulse duration - the maximal applicable modulation frequency - optical projection and its influence on the optical output - spatial control of the illumination and thermal wave shaping Our results indicate that a VCSEL-array can be used for conventional impulse (aka flash) thermography whereas pulse duration and power are instantaneously accessible compared to flash lamp excitation. In case of lock-in thermography, we can apply frequencies in excess of 200 Hz without a loss in amplitude or an after glowing of the source, making it attractive for photo thermal applications. Consequently, this means that the VCSEL-array is able to merge the two main excitation methods lock-in and impulse thermography. T2 - 57th Course on Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 19.10.2016 KW - VCSEL KW - Thermal Wave KW - Active Thermography PY - 2016 AN - OPUS4-37952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Ziegler, Mathias T1 - Spatial and temporal control of thermal waves by using DMDs for interference based crack detection N2 - Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples’ surface whereas inner defects alter the non-stationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces – via absorption at the sample’s surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mm-range for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection. T2 - Photonics West 2016, OPTO, 9761 CY - San Francisco, Cal, USA DA - 15.02.2016 KW - Thermal Waves KW - Laser KW - DMD KW - Active Thermography PY - 2016 AN - OPUS4-35586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schlichting, Joachim T1 - Integrale Verfahren der aktiven Infrarotthermografie N2 - Die zerstörungsfreie Prüfung ist eine Aufgabe von großer Bedeutung, sowohl aus wirtschaftlicher Perspektive, als auch um die notwendige Sicherheit technischer Systeme gewährleisten zu können. Mit der Thermografie steht eine schnelle und berührungslose Prüftechnik zur Verfügung, die nicht zuletzt wegen der rapiden Entwicklung auf dem Gebiet der Infrarotkameras in letzter Zeit große Aufmerksamkeit erfährt. Typischerweise werden thermografisch oberflächennahe, parallel zur Oberfläche ausgedehnte Defekte nachgewiesen. In dieser Arbeit werden zwei untypische Prüfprobleme gelöst. An Punktschweißverbindungen wird mit der Linsengröße eine Struktur in der Mitte der Probe mittels Blitzlichtthermografie indirekt vermessen. Hier können typische Fehlerbilder wie Klebverbindungen und Spritzer sicher erkannt werden, was statistisch abgesichert durch eine Serienmessung und den Vergleich mit zerstörender Prüfung gezeigt wird. Ein Beispiel für orthogonal zur Oberfläche orientierte Fehlstellen stellen Risse dar, wie sie beispielsweise in Schweißnähtenn häufig auftreten. Neben der Entwicklung eines Verfahrens zur Detektion von Rissen, welches auf kommerziell erhältlichen Geräten aufbaut, wurde in Experimenten und Finite-Elemente-Simulationen untersucht, inwieweit sich auch die geometrischen Eigenschaften bestimmen lassen. Mit einem Verfahren, das ebenso wie die Methode zur Prüfung der Schweißpunkte auf der Analyse zeitlich und räumlich integraler Größen basiert, die vom thermischen Widerstand abhängen, ist die gleichzeitige Bestimmung von Winkel und Tiefe möglich. N2 - Non-destructive evaluation is a task of utmost importance for both, the economic point of view and to guarantee the required safety and reliability of technical systems. Thermography is a fast and contactless technique which received continued attention not least through the significant price drop at the infrared camera market. It is typically used to detect near-surface defects which are expanded parallel to the surface. This thesis deals with two non-standard inspection tasks. With the weld lens diameter of spot welds, a feature in the sample's geometrical center is indirectly sized by ash thermography. The presented method is suitable to distinguish typical error classes like stick welds or expulsions. This fact is validated by statistical evaluations of thermographic and destructive test series. As an example for perpendicularly oriented imperfections, surface cracks are investigated, which can be a major problem at welding seams. A technique for detecting cracks entirely based on commercially available equipment is developed. In addition, the accessibility of geometric characteristics of cracks was examined by experiments and FEM-simulations. Similar to the method developed for assessing spot welds, an approach based on the analysis of spatial and temporal integral quantities which depend on the thermal resistance is used. In doing so, the simultaneous determination of crack angle and depth is possible. T3 - BAM Dissertationsreihe - 91 KW - Aktive Thermografie KW - FEM KW - Spot Welding KW - Cracks KW - Nondesstructive Evaluation KW - Active Thermography KW - Zerstörungsfreie Prüfung KW - Punktschweißen KW - Risse KW - FEM PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-676 SN - 978-3-9815134-6-2 SN - 1613-4249 VL - 91 SP - 1 EP - 209 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-67 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -