TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena A1 - Hülagü, Deniz T1 - Determining Material Properties with Spectroscopic Ellipsometry N2 - In this lecture, an introduction will be given on Spectroscopic Ellipsometry, what quantities can be obtained with it, and how we use it in ELENA and other projects to determine functional parameters of thin layers at the nanoscale. T2 - Summer school ELENAM : metrology at the nanoscale CY - Fréjus, France DA - 02.06.2024 KW - Thin Layers KW - Ellipsometry KW - Nanotechnology KW - Electrical Paramters PY - 2024 AN - OPUS4-60247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, G. J. A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_1/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_1 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Synthesis KW - Automation KW - Traceability KW - Procedure PY - 2024 DO - https://doi.org/10.5281/zenodo.11236031 PB - Zenodo CY - Geneva AN - OPUS4-60243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Radnik, Jörg A1 - Ermilova, Elena A1 - Hodoroaba, Vasile-Dan T1 - Accuracy on all scales: Hybrid metrology for micro- and nanomanufacturing N2 - In this presentation, we discuss hybrid metrology and correlative imaging. These techniques are used to improve the design and quality monitoring of nanomaterials used in energy technology and for referencing the properties of nanoparticles. T2 - EMN for Advanced Manufacturing workshop CY - Berlin, Germany DA - 22.05.2024 KW - Nanotechnology KW - Nanoanalytics KW - Correlative Spectroscopy KW - Correlative Imaging PY - 2024 AN - OPUS4-60240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, Heike A1 - Knigge, Xenia A1 - Knapic, D. A1 - Weise, Matthias A1 - Sahre, Mario A1 - Hertwig, Andreas A1 - Sacco, A. A1 - Rossi, A. M. A1 - Radnik, Jörg A1 - Müller, Kai A1 - Wasmuth, Karsten A1 - Krüger, Jörg A1 - Hassel, A. W. A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Picosecond laser processing of hierarchical micro–nanostructures on titanium alloy upon pre- and postanodization: morphological, structural, and chemical effects JF - Physica Status Solidi A N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser processing step) plays an important role for the response of bone-forming osteoblasts—an effect that can be utilized for improving permanent dental or removable bone implants. For exploring these different surface functionalities, multimethod morphological, structural, and chemical characterizations are performed in combination with electrochemical pre- and postanodization for two different characteristic microspikes covered by nanometric laser-induced periodic surface structures on Ti–6Al–4V upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ≈1 ps pulse duration, 67 and 80 kHz pulse repetition frequency) at two distinct sets of laser fluence and beam scanning parameters. This work involves morphological and topographical investigations by scanning electron microscopy and white light interference microscopy, structural material examinations via X-ray diffraction, and micro-Raman spectroscopy, as well as near-surface chemical analyses by X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The results allow to qualify the mean laser ablation depth, assess the spike geometry and surface roughness parameters, and provide new detailed insights into the near-surface oxidation that may affect the different cell growth behavior for pre- or postanodized medical implants. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Hierarchical micro-nanostructures KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Ti-6Al-4V alloy KW - X-ray photoelectron spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601962 DO - https://doi.org/10.1002/pssa.202300920 SN - 1862-6319 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-60196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Sachse, René A1 - Kotil, L. A1 - Matjacic, L. A1 - McMahon, G. A1 - Bernicke, M. A1 - Bernsmeier, D. A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Morphological and chemical analysis of mesoporous mixed IrOx-TiOy thin films as electrode materials N2 - Porous films play an important role particularly in energy applications like photovoltaics, electrolysis or batteries. Thin film properties such as thickness, chemical composition, crystallinity of the framework, and porosity define the activity of the porous films. The accurate morpho-chemical characterisation of mesoporous thin films is a challenging analytical task which requires the consideration of new analytical approaches based on the combination of data of different methods able to address the structure and chemical composition at the nanoscale. In this contribution we characterise thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with Energy-Dispersive X-ray Spectroscopy (EDS) at an SEM applied in a dedicated “thin film analysis” approach (1). Thus, the film mass deposition, film thickness and the film density can be determined. Further, by dividing the measured film density to an assumed (theoretical) metal oxide framework (skeletal) density, the thin film porosity can be extracted, too. In order to assess the homogeneity of the thin film properties like the chemical composition, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Auger Electron Spectrometry are applied in the depth profiling mode, so that possible in-depth gradients are detected. Lateral inhomogeneities in the chemical composition and structure of the thin mesoporous films are also identified by applying the same methods in the line-scan or mapping mode, which can be further combined with in-depth sputtering for 3D information. The role of the spatial resolution of the analytical methods considered, which can go down well below 100 nm, will be highlighted. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - Mesoporous KW - Thin films KW - Iridium oxide KW - Titanium oxide KW - Thin film analysis KW - Porosity KW - SIMS KW - Auger electron spectroscopy PY - 2024 AN - OPUS4-60185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Salzmann, Christoph A1 - Heilmann, Maria T1 - Ongoing VAMAS interlaboratory comparisons on nanoparticles size and shape as pre standardisation projects for harmonized measurements N2 - Traceable morphological and chemical characterization of nanomaterials with respect to the various possible sizes, size distributions, shapes, and concentrations of real-world nanoparticles (NPs) is a challenging task. Particularly for the nonspherical, non-monodisperse nanoparticles – as typically for most of the commercial particles, including their strong tendency to agglomerate, there is a lack of standard operation procedures providing accurate nanoparticle characterisation. In the framework of the pre-standardisation framework of VAMAS (Versailles Project on Advanced Materials and Standards, www.vamas.org) two interlaboratory comparison (ILC) studies are being carried out under the Technical Working Area (TWA) 34 “Nanoparticle Populations”:i) Project #15 addresses the analysis of the size and shape distribution of TiO2 bipyramidal NPs by traceable imaging methods such as TEM, SEM, STEM-in-SEM, AFM as well as with SAXS as an ensemble method. This ILC is thought as the next level development of the case studies exemplified in the published ISO standards ISO 21363 and ISO 19749. It was agreed to complete the first ILC with the NPs already prepared according to the same procedure on a TEM grid, and, at a later stage, to carry out second ILCs with the same NPs distributed to the participants as liquid suspensions together with protocols for the uniform NP deposition on suited substrates - as developed and optimized within the European project nPSize. Once having good deposition protocols available, the door for automated image analysis gets opened. Corresponding image analysis protocols and reporting templates have been distributed to the ILC participants, too. ii) Project #16: two spherical SiO2 NP samples with bi-modal size distributions in two nominal relative number concentrations were prepared and distributed also as liquid suspensions accompanied by sample preparation, measurement, and image analysis protocols and reporting templates. Here, the NP concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations (relative populations of the two modes). The results of all the participating laboratories, in both ILCs, compiled in comparative representations will be shown and discussed for the first time. The reduction of the measurement uncertainties associated to the size, shape and number-concentration results induced by the significant improvement of the sample preparation on substrates (as single particles with a high-density coverage), combined with welldefined image analysis procedures will be highlighted. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - VAMAS KW - Interlaboratory comparison KW - Electron microscopy KW - Particle size distribution KW - Article concentration PY - 2024 AN - OPUS4-60184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nag, Sayak A1 - Emmerling, Franziska A1 - Tothadi, Srinu A1 - Bhattacharya, Biswajit A1 - Ghosh, Soumyajit T1 - Distinct photomechanical responses of two new 1,3-dimethylbarbituric acid derivative crystals JF - CrystEngComm N2 - We demonstrate two distinct photomechanical responses (i.e. photomechanical bending and photosalient bursting) of two new 1,3-dimethylbarbituric acid derivative crystals based on tailoring their substituents and the modulation of their spacers. KW - Crystal engineering KW - Fexible crystals PY - 2024 DO - https://doi.org/10.1039/D4CE00233D SP - 1 EP - 12 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunkel, Benny A1 - Seeburg, Dominik A1 - Kabelitz, Anke A1 - Witte, Steffen A1 - Gutmann, Torsten A1 - Breitzke, Hergen A1 - Buntkowsky, Gerd A1 - Guilherme Buzanich, Ana A1 - Wohlrab, Sebastian T1 - Highly productive V/Zn-SiO2 catalysts for the selective oxidation of methane JF - Catalysis Today N2 - The production of formaldehyde on industrial scale requires huge amounts of energy due to the involvement of reforming processes in combination with the demand in the megaton scale. Hence, a direct route for the transformation of (bio)methane to formaldehyde would decrease costs and puts less pressure on the environment. Herein, we report on the use of zinc modified silicas as possible support materials for vanadium catalysts and the resulting consequences for the performance in the selective oxidation of methane to formaldehyde. After optimization of the Zn content and reaction conditions, a remarkably high space-time yield of 12.4 kgCH2O⋅kgcat − 1 ⋅h− 1 was achieved. As a result of the extensive characterization by means of UV–vis, Raman, XANES and NMR spectroscopy it was found that vanadium is in the vicinity of highly dispersed zinc atoms which promote the formation of active vanadium species as supposed by theoretical calculations. This work presents a further step of catalyst development towards direct industrial methane conversion which may help to overcome current limitations in the future. KW - Catalysis KW - XANES KW - Selective oxidation PY - 2024 DO - https://doi.org/10.1016/j.cattod.2024.114643 SN - 0920-5861 VL - 432 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grundmann, Jana A1 - Bodermann, Bernd A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Rafighdoost, Jila A1 - Pereira, Silvania F. T1 - Optical and tactile measurements on SiC sample defects JF - Journal of Sensors and Sensor Systems N2 - Abstract. In power electronics, compound semiconductors with large bandgaps, like silicon carbide (SiC), are increasingly being used as material instead of silicon. They have a lot of advantages over silicon but are also intolerant of nanoscale material defects, so that a defect inspection with high accuracy is needed. The different defect types on SiC samples are measured with various measurement methods, including optical and tactile methods. The defect types investigated include carrots, particles, polytype inclusions and threading dislocations, and they are analysed with imaging ellipsometry, coherent Fourier scatterometry (CFS), white light interference microscopy (WLIM) and atomic force microscopy (AFM). These different measurement methods are used to investigate which method is most sensitive for which type of defect to be able to use the measurement methods more effectively. It is important to be able to identify the defects to classify them as critical or non-critical for the functionality of the end product. Once these investigations have been completed, the measurement systems can be optimally distributed to the relevant defects in further work to realize a hybrid analysis of the defects. In addition to the identification and classification of defects, such a future hybrid analysis could also include characterizations, e.g. further evaluation of ellipsometric data by using numerical simulations. KW - Compound semiconductors KW - Hybrid metrology KW - Material defects KW - Spectroscopic Ellipsometry KW - Scanning Probe Microscopy KW - White-light Interference Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601220 DO - https://doi.org/10.5194/jsss-13-109-2024 SN - 2194-878X VL - 13 IS - 1 SP - 109 EP - 121 PB - Copernicus GmbH AN - OPUS4-60122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Altmann, Korinna T1 - Reference material BAM-P206 polyethylene terephthalate (powder) N2 - This report contains detailed information on the preparation of the reference material as well as on homogeneity and stability investigations of the property of interest, the equivalent particle diameter, and on the analytical methods to determine the additional properties. The values for particle size distribution are based on the results from laser diffraction measurements of 3 different devices with at least 3 replicate measurements of 4 randomly chosen units of the reference material P206. KW - Microplastic KW - Reference material KW - PET PY - 2023 DO - https://doi.org/10.26272/opus4-59778 SP - 1 EP - 23 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-59778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -