TY - CONF A1 - Topolniak, Ievgeniia T1 - Micropatterning of mussel-inspired materials - Empower selective functionality N2 - Surface-modification platforms that are universally applicable are vital for the development of new materials, surfaces, and nanoparticles. Mussel-inspired materials (MIMs) are widely used in various fields because of their strong adhesive properties and post-functionalization reactivity. However, conventional MIM coating techniques have limited deposition selectivity and lack structural control, which has limited their use in microdevices that require full control over deposition. To overcome these limitations, we developed a micropatterning technique for MIMs using multiphoton lithography, which does not require photomasks, stamps, or multistep procedures. This method enables the creation of MIM patterns with micrometer resolution and full design freedom and paves the way for innovative applications of MIMs in various multifunctional systems and microdevices, such as microsensors, MEMS, and microfluidics. T2 - BioCHIP Berlin - International Forum on Biochips and Microfabrication CY - Berlin, Germany DA - 28.05.2024 KW - Mussel inspired materials KW - Multiphoton lithography KW - Two photon polymerisation PY - 2024 AN - OPUS4-60254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena T1 - On the use of spectroscopic imaging ellipsometry for quantification and characterisation of defects in thin films for power electronics N2 - Compound semiconductors (CS) are promising materials for the development of high-power electrical applications. They have low losses, can withstand high temperatures and can operate at very high voltages and currents. This makes them a key technology for the electrification of many high energy applications, especially electromobility and HVDC power lines. The challenge with CS technology is that most of the process technology has to be developed anew to the high standards required by electronic applications. Today, compound semiconductors can be produced in thin layers on top of substrates fabricated from classical crystal growth processes that are already well established. A promising method for this is metal organic vapour phase epitaxy (MOVPE). With this method, many different compounds with semiconducting properties can be synthesized. Additionally, this process technology is a direct thin layer deposition method. Therefore, complex multilayer systems can be generated directly by the deposition process and without the need of doping after growing. There are a number of critical defects that can originate from the deposition process of these thin film devices. Within this project, we intend to develop new correlative imaging and analysis techniques to determine defect types, to quantify defect size and number density, as well as to characterise defects for process optimisation. We report here on the use of spectroscopic ellipsometry and imaging ellipsometry to investigate defects in several different compound semiconductor materials used in high-power electronic devices. The materials we investigated are β-Ga2O3, SiC, GaN, AlN, and AlGaN materials as well as oxidised SiC surfaces. All of these materials have their typical defects and require optimised measurement and analysis schemes for reliable detection and analysis. Spectroscopic ellipsometry is a highly sensitive method for determining the thicknesses and dielectric function of thin layers, yielding potentially a high number of microscopic properties. The combined method between ellipsometry and optical microscopy is called imaging ellipsometry and is especially powerful for the large amount of data it produces. We have analysed defects in SiC- and AlN-based thin film semiconductors as well as characterised the properties of different types of SiO2 layers created on top of SiC monocrystals. We developed ellipsometric models for the data analysis of the different semiconductor materials. If the defects have geometric features, it is useful to combine the ellipsometric analysis with topometry method like interference microscopy and scanning probe microscopy. We have successfully characterised function-critical defects in MOVPE SiC layers and correlated the findings with topography from WLIM measurements. We have developed an imaging ellipsometric measurement methodology that allows to estimate the relative defect area on a surface by a statistical raw data analysis. Compound semiconductors (CS) are promising materials for the development of high-power electrical applications. They have low losses, can withstand high temperatures and can operate at very high voltages and currents. This makes them a key technology for the electrification of many high energy applications, especially electromobility and HVDC power lines. The challenge is that most of the process technology has to be developed specifically and tailored to the high standards required by electronic applications. Today, many different CS materials can be produced in thin layers on top of substrates fabricated from classical crystal growth processes that are already well established. A promising method for this is metal organic vapour phase epitaxy (MOVPE). This technology is a direct thin layer deposition method capable of producing complex multilayer systems directly from one deposition process without the need of doping after growing. There are a number of critical defects that can originate from the deposition process when targeting electronic thin film devices. Within this project, we intend to develop new correlative imaging and analysis techniques to determine defect types, to quantify defect size and density, as well as to characterise defects for further process optimisation. We report here on the use of spectroscopic and multispectral imaging ellipsometry to investigate defects in several different compound semiconductor materials used in high-power electronic devices. The materials we investigated are β-Ga2O3, SiC, GaN, AlN, and AlGaN as well as oxidised SiC. All of these materials have their typical defects and require optimised measurement and analysis schemes for reliable detection and analysis. Spectroscopic ellipsometry is a highly sensitive method for determining the thicknesses and dielectric function of thin layers, yielding potentially a high number of microscopic properties. The combined method between ellipsometry and optical microscopy is known as imaging ellipsometry and is especially powerful for the large amount of data it produces. We have analysed defects in SiC- and AlN-based thin film semiconductors as well as characterised the properties of different types of SiO2 layers created on top of SiC monocrystals. We developed ellipsometric models for the data analysis of the different semiconductor materials. If the defects have geometric features, it is useful to combine the ellipsometric analysis with topometry methods like interference microscopy and scanning probe microscopy. We have successfully characterised function-critical defects in MOVPE SiC layers and correlated the findings with topography from WLIM measurements. We have developed an imaging ellipsometric measurement methodology that allows to estimate the relative defect area on a surface by a statistical raw data analysis. T2 - EMRS Spring Meeting 2024 - ALTECH 2024 CY - Strasbourg, France DA - 27.05.2024 KW - Ellipsometry KW - Power Electronics KW - Layer Materials KW - Defect Analysis PY - 2024 AN - OPUS4-60266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Weise, Matthias A1 - de Preville, Sophie A1 - Hoffmann, Johannes A1 - Morán-Meza, José A1 - Hertwig, Andreas A1 - Piquemal, François T1 - Ellipsometry as optical metrology method for analysis of reference materials for nanoelectronics N2 - Electrical properties of materials at the nanoscale can be characterized using scanning microwave microscopes (SMM) and conductive atomic force microscopes (C AFM). However, the measurement results are difficult to compare since different setups and different reference standards are used. The development of new “out-of-lab” reference standards can contribute to the traceability and reliability of these scanning probe microscopy methods (SPM) and facilitate their broader industrial application. In this study, we discuss the capability of optical methods such as ellipsometry for the characterization of existing and the development of new reference calibration samples for scanning microwave microscopy. Ellipsometry is a fast and non-destructive method, which enables very accurate determination of the layer thickness and the dielectric functions of the materials. Imaging ellipsometry is suitable for spatially resolved measurements when analyzing thin layers in microstructured samples. We show how the electrical resistivity of indium tin oxide (ITO) layers in newly designed resistive calibration samples can be obtained from spectroscopic ellipsometric measurements. The extension of the measurement range into the mid-infrared region was necessary when analyzing ITO layers with low conductivity. This parameter was obtained by fitting a Drude function describing the absorption of the free carriers. The impact of the coating process conditions on the layer properties is discussed. Imaging ellipsometry was applied for the characterisation of thin ITO and SiO2 layers in microstructured resistive and capacitance calibration kits. The uncertainties of determined layer thicknesses were specified according to standardized practice guides used in ellipsometry. We show how statistical fingerprint analysis of the measured ellipsometric transfer quantities can be used to validate the quality of potential reference materials for nano-electronics and to monitor the processing of structured samples. T2 - L. ALTECH 2024 - Analytical techniques for accurate nanoscale characterization of advanced materials CY - Strasbourg, France DA - 27.05.2024 KW - Ellipsometry KW - Reference materials KW - Transparent conductive Oxides KW - Scannig probe microscope KW - Metrology KW - Nanoelectronics PY - 2024 AN - OPUS4-60268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena A1 - Hülagü, Deniz T1 - Determining Material Properties with Spectroscopic Ellipsometry N2 - In this lecture, an introduction will be given on Spectroscopic Ellipsometry, what quantities can be obtained with it, and how we use it in ELENA and other projects to determine functional parameters of thin layers at the nanoscale. T2 - Summer school ELENAM : metrology at the nanoscale CY - Fréjus, France DA - 02.06.2024 KW - Thin Layers KW - Ellipsometry KW - Nanotechnology KW - Electrical Paramters PY - 2024 AN - OPUS4-60247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, G. J. A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_1/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_1 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Synthesis KW - Automation KW - Traceability KW - Procedure PY - 2024 DO - https://doi.org/10.5281/zenodo.11236031 PB - Zenodo CY - Geneva AN - OPUS4-60243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Radnik, Jörg A1 - Ermilova, Elena A1 - Hodoroaba, Vasile-Dan T1 - Accuracy on all scales: Hybrid metrology for micro- and nanomanufacturing N2 - In this presentation, we discuss hybrid metrology and correlative imaging. These techniques are used to improve the design and quality monitoring of nanomaterials used in energy technology and for referencing the properties of nanoparticles. T2 - EMN for Advanced Manufacturing workshop CY - Berlin, Germany DA - 22.05.2024 KW - Nanotechnology KW - Nanoanalytics KW - Correlative Spectroscopy KW - Correlative Imaging PY - 2024 AN - OPUS4-60240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Sachse, René A1 - Kotil, L. A1 - Matjacic, L. A1 - McMahon, G. A1 - Bernicke, M. A1 - Bernsmeier, D. A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Morphological and chemical analysis of mesoporous mixed IrOx-TiOy thin films as electrode materials N2 - Porous films play an important role particularly in energy applications like photovoltaics, electrolysis or batteries. Thin film properties such as thickness, chemical composition, crystallinity of the framework, and porosity define the activity of the porous films. The accurate morpho-chemical characterisation of mesoporous thin films is a challenging analytical task which requires the consideration of new analytical approaches based on the combination of data of different methods able to address the structure and chemical composition at the nanoscale. In this contribution we characterise thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with Energy-Dispersive X-ray Spectroscopy (EDS) at an SEM applied in a dedicated “thin film analysis” approach (1). Thus, the film mass deposition, film thickness and the film density can be determined. Further, by dividing the measured film density to an assumed (theoretical) metal oxide framework (skeletal) density, the thin film porosity can be extracted, too. In order to assess the homogeneity of the thin film properties like the chemical composition, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Auger Electron Spectrometry are applied in the depth profiling mode, so that possible in-depth gradients are detected. Lateral inhomogeneities in the chemical composition and structure of the thin mesoporous films are also identified by applying the same methods in the line-scan or mapping mode, which can be further combined with in-depth sputtering for 3D information. The role of the spatial resolution of the analytical methods considered, which can go down well below 100 nm, will be highlighted. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - Mesoporous KW - Thin films KW - Iridium oxide KW - Titanium oxide KW - Thin film analysis KW - Porosity KW - SIMS KW - Auger electron spectroscopy PY - 2024 AN - OPUS4-60185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Salzmann, Christoph A1 - Heilmann, Maria T1 - Ongoing VAMAS interlaboratory comparisons on nanoparticles size and shape as pre standardisation projects for harmonized measurements N2 - Traceable morphological and chemical characterization of nanomaterials with respect to the various possible sizes, size distributions, shapes, and concentrations of real-world nanoparticles (NPs) is a challenging task. Particularly for the nonspherical, non-monodisperse nanoparticles – as typically for most of the commercial particles, including their strong tendency to agglomerate, there is a lack of standard operation procedures providing accurate nanoparticle characterisation. In the framework of the pre-standardisation framework of VAMAS (Versailles Project on Advanced Materials and Standards, www.vamas.org) two interlaboratory comparison (ILC) studies are being carried out under the Technical Working Area (TWA) 34 “Nanoparticle Populations”:i) Project #15 addresses the analysis of the size and shape distribution of TiO2 bipyramidal NPs by traceable imaging methods such as TEM, SEM, STEM-in-SEM, AFM as well as with SAXS as an ensemble method. This ILC is thought as the next level development of the case studies exemplified in the published ISO standards ISO 21363 and ISO 19749. It was agreed to complete the first ILC with the NPs already prepared according to the same procedure on a TEM grid, and, at a later stage, to carry out second ILCs with the same NPs distributed to the participants as liquid suspensions together with protocols for the uniform NP deposition on suited substrates - as developed and optimized within the European project nPSize. Once having good deposition protocols available, the door for automated image analysis gets opened. Corresponding image analysis protocols and reporting templates have been distributed to the ILC participants, too. ii) Project #16: two spherical SiO2 NP samples with bi-modal size distributions in two nominal relative number concentrations were prepared and distributed also as liquid suspensions accompanied by sample preparation, measurement, and image analysis protocols and reporting templates. Here, the NP concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations (relative populations of the two modes). The results of all the participating laboratories, in both ILCs, compiled in comparative representations will be shown and discussed for the first time. The reduction of the measurement uncertainties associated to the size, shape and number-concentration results induced by the significant improvement of the sample preparation on substrates (as single particles with a high-density coverage), combined with welldefined image analysis procedures will be highlighted. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - VAMAS KW - Interlaboratory comparison KW - Electron microscopy KW - Particle size distribution KW - Article concentration PY - 2024 AN - OPUS4-60184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Mikroplastik Detektion mit Thermoanalytischen Methoden: Analytik, Referenzmaterial, Ringversuche N2 - Ich dem Vortrag geht es um die Vorstellung von thermoanalytischen Methoden für die Mikroplastik-Detektion. Verschiedene Kopplungsmöglichkeiten werden gezeigt und die Funktionsweise der TED-GC/MS wird erklärt. Im zweiten Teil werden Referenzmaterialien für die Mikroplastik-Analytik diskutiert. PET -Tabletten des PlasticTrace Projektes werden vorgestellt. Am Ende wird der VAMAS Ringversuch zur Mikroplastik-Detektion gezeigt. T2 - Plastik, Mikroplastik, Nanopartikel, PFAS und Verunreinigungen (Agilent Workshop) CY - Hamburg, Germany DA - 28.05.2024 KW - Mikroplastik KW - TED-GC/MS KW - Polymer 3R KW - Ringversuche KW - Referenzmaterial PY - 2024 AN - OPUS4-60155 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grundmann, Jana A1 - Bodermann, Bernd A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Rafighdoost, Jila A1 - Pereira, Silvania F. T1 - Optical and tactile measurements on SiC sample defects JF - Journal of Sensors and Sensor Systems N2 - Abstract. In power electronics, compound semiconductors with large bandgaps, like silicon carbide (SiC), are increasingly being used as material instead of silicon. They have a lot of advantages over silicon but are also intolerant of nanoscale material defects, so that a defect inspection with high accuracy is needed. The different defect types on SiC samples are measured with various measurement methods, including optical and tactile methods. The defect types investigated include carrots, particles, polytype inclusions and threading dislocations, and they are analysed with imaging ellipsometry, coherent Fourier scatterometry (CFS), white light interference microscopy (WLIM) and atomic force microscopy (AFM). These different measurement methods are used to investigate which method is most sensitive for which type of defect to be able to use the measurement methods more effectively. It is important to be able to identify the defects to classify them as critical or non-critical for the functionality of the end product. Once these investigations have been completed, the measurement systems can be optimally distributed to the relevant defects in further work to realize a hybrid analysis of the defects. In addition to the identification and classification of defects, such a future hybrid analysis could also include characterizations, e.g. further evaluation of ellipsometric data by using numerical simulations. KW - Compound semiconductors KW - Hybrid metrology KW - Material defects KW - Spectroscopic Ellipsometry KW - Scanning Probe Microscopy KW - White-light Interference Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601220 DO - https://doi.org/10.5194/jsss-13-109-2024 SN - 2194-878X VL - 13 IS - 1 SP - 109 EP - 121 PB - Copernicus GmbH AN - OPUS4-60122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -