TY - CONF A1 - Paul, Astrid A1 - Ziegert, C. A1 - Fontana, Patrick A1 - Meyer, J. T1 - StandardBoard - Produktnorm für Lehmplatten T1 - StandardBoard - A product standard for earthen panels T2 - Lehm 2016 - Tagungsbeiträge der 7. Internationalen Fachtagung für Lehmbau T2 - Lehm 2016 - Proceedings of the 7th International Conference on Building with Earth N2 - Die Anwendung von modernen Lehmbaustoffen hat in den letzten Jahren überdurchschnittliche Wachstumsraten erreicht. Für Bauherren und Planer ausschlaggebend ist häufig ihr extrem niedriger CO2-Äquivalentkennwert. Entsprechend wurden Lehmplatten in einem Projekt mit Pilotcharakter für den Umbau des alten Abgeordnetenhauses in Bonn zum Gebäude des Klimareferats der Vereinten Nationen verwendet. Bei der Entscheidung für die Bauweise mit Lehmplatten standen vor allem raumklimatische und schallschutztechnische, das heißt gesundheitliche Aspekte, aber auch der Wunsch nach erhöhter Nachhaltigkeit im Vordergrund. Durch das Fehlen einer Norm entstehen im Vergleich zu geregelten Bauprodukten jedoch noch deutliche Wettbewerbsnachteile für Produzenten von Lehmplatten. Planer und Anwender sehen aufgrund fehlender Prüfzertifikate nicht selten von der Anwendung dieser Lehmbaustoffe ab. Wie schon für Lehmsteine und Lehmmörtel sollen deshalb jetzt auch für Lehmplatten an der Bundesanstalt für Materialforschung und -prüfung (BAM) in dem Projekt StandardBoard Grundlagen für eine Produktnorm geschaffen werden. Darin ist als Projektpartner der Hersteller Conluto beteiligt. Zweck des in Erarbeitung befindlichen Regelwerks ist es, über die Festlegung von Qualitätsanforderungen und Prüfvorschriften die Gebrauchstauglichkeit von Lehmplatten sicherzustellen und somit einerseits Sicherheit für Planer und Anwender und andererseits Vergleichbarkeit und damit Konkurrenzfähigkeit zu konventionellen Plattenprodukten für gleiche Einbaubereiche zu erreichen. Darüber hinaus stellt sie ein Instrument dar, um die besonderen ökologischen und bauphysikalischen Eigenschaften der Lehmbaustoffe hervorzuheben. Die Erarbeitung des Regelwerks erfolgt in enger Abstimmung mit dem Dachverband Lehm e. V. (DVL). N2 - In recent years. the utilization of modern building materials made from soil has extended considerably. For building principals and designers. this decision is often determined by their extremely low carbon dioxide equivalent. A paradigm is the application of earth panels in the conversion of the former House of Representatives in Bonn to the secretariat of the United Nations Framework Convention on Climate Change. The choice of earth panels was determined not only by considerations of indoor climate and acoustic insulation issues. but particularly by an endeavour to attain a high level of sustainability. The lack of a standard causes producers of earth panels to experience considerable competitive disadvantages. With the absence of test certificates. designers as well as implementers refrain from using earth materials. The project StandardBoard has been initiated with the purpose of developing the basis for a product standard for earth panels. being realized at the BAM. where also standards for earth blocks and earth mortars have been developed. The BAM is cooperating with the project partner Conluto. a manufacturer of earth panels. The object of the standard being in development is to guarantee the usability of earth panels by stating quality requirements and testing procedures and thereby to achieve safety for designers and users as well as competitiveness with established panels. Furthermore. a standard allows to emphasize the special ecological and climatic features of earth materials. The drafting of the standard is coordinated in close relation to the German Association for Earth Construction (DVL). T2 - Lehm 2016 - 7. Internationale Fachtagung für Lehmbau - 7th International Conference on Building with Earth CY - Weimar, Germany DA - 12.11.2016 KW - Baustoffe KW - Moderne Lehmbaustoffe KW - Lehmplatte KW - Normung KW - Prüfung KW - Produktqualität KW - Building materials KW - Modern earthen building materials KW - Earth panel KW - Standardisation KW - Testing KW - Product quality PY - 2016 SP - 1 EP - 12 PB - Eigenverlag Dachverband Lehm e. V. CY - Weimar AN - OPUS4-38996 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klinge, A. A1 - Roswag-Klinge, E. A1 - Ziegert, C. A1 - Fontana, Patrick A1 - Richter, Matthias A1 - Hoppe, Johannes ED - Habert, G. ED - Schlueter, A. T1 - Naturally ventilated earth timber constructions T2 - Expanding boundaries: Systems thinking for the built environment - Sustainable Built Environment (SBE) N2 - Earth, timber, fibre boards and insulation materials based on wooden and other natural fibres offer a variety of properties beneficial for eco innovative constructions that are able to improve the energy and resource efficiency of buildings. Due to their porosity, natural building materials are vapour active and are able to buffer moisture. In combination with highly insulated and airtight but vapour permeable building envelopes, modern earth-timber constructions provide stable indoor humidity levels and can therefore be naturally ventilated while achieving highest energy efficiency standards. Experimental evidence suggests that monitored pilot buildings in Berlin do show healthy indoor air humidity levels (around 50%) in wintertime, while mechanically ventilated buildings demonstrate significantly lower values (around 25%), which have to be considered as uncomfortable and unhealthy. The application of building materials being poor in chemical emissions, particularly volatile organic compounds (VOC) and radon, improves the indoor air quality further, so that intermittent ventilation twice a day will be sufficient to provide healthy indoor air quality. The air quality in critical rooms (e.g. small bedrooms), demonstrating a smaller air volume, should be monitored if appropriate ratios of room size to occupancy level cannot be realised. Through night time ventilation in summer, vapour active earth-timber constructions provide evaporative cooling (humidity adsorption at night time and desorption during the day). As a result, indoor temperatures of earth-timber buildings range around 8 °C below the outside temperature peak, when an appropriate glazing ratio is reflected. The EU funded research project H-house is investigating various construction materials regarding water vapour adsorption as well as emission and absorption of harmful substances. Based on this investigation new wall constructions are designed to provide a healthier indoor environment. T2 - Sustainable Built Environment (SBE) Regional Conference - Expanding Boundaries: Systems Thinking for the Built Environment CY - Zurich, Switzerland DA - 15.06.2016 KW - Building materials KW - Climate control through building elements KW - Hygroscopic earthen and wooden materials KW - Natural ventilation KW - Airtight building KW - Low emissions PY - 2016 SN - 978-3-7281-3774-6 DO - https://doi.org/10.3218/3774-6 SP - 674 EP - 681 PB - vdf Hochschulverlag und der ETH Zürich CY - Zürich AN - OPUS4-37201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Ziegert, C. A1 - Müller, P. ED - Modena, C. ED - da Porto, F. ED - Valluzzi, M. R. T1 - Calibration of partial safety factors for earth block masonry under compression loading T2 - IB2MAC Brick and Block Masonry - Trends, Innovations and Challenges N2 - The goal of the present study is to assess the feasibility to develop a first reliable database of materials parameters for Earth Block Masonry (EBM). The database is crucial when defining the materials safety factors. In the first part an experimental campaign of compressive tests were carried out on two types of earth block and two types of earth mortar. The results showed that the mean variation of the compressive strength was remarkably less than expected. This low variation is related to a production with high quality standards of the materials employed. In the second part a partial safety factor for EBM under uniaxial compression was determined through the reliability method. The results proved the reliability of a common calculation method for EBM based on partial safety factors following the current standards. T2 - IB2MAC 2016 - 16th International Brick and Block Masonry Conference CY - Padua, Italy DA - 26.06.2016 KW - earth block masonry KW - partial safety factors KW - uniaxial compression test PY - 2016 SN - 978-1-138-02999-6 SP - 857 EP - 864 PB - CRC Press Taylor & Francis Group CY - London, UK AN - OPUS4-37145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroeder, H. A1 - Ziegert, C. A1 - Fontana, Patrick ED - Lourenco, P.B. ED - Haseltine, B.A. ED - Vasconcelos, G. T1 - The new German standards for earth blocks and earth masonry mortar T2 - 9th IMC - International Masonry Conference 2014 N2 - In August 2013, the German National Institute for Standardization DIN published three national standards for industrially-produced earth building materials without the use of chemical stabilizers: DIN 18945 Earth blocks – definitions, building materials, requirements, test procedures DIN 18946 Earth masonry mortars – definitions, building materials, requirements, test procedures DIN 18947 Earth plaster mortars – definitions, building materials, requirements, test procedures The development of these standards was initiated by the Dachverband Lehm e.V. (DVL), the German umbrella organisation for building with earth. These standards are in accordance with the requirements of the EU Regulation No. 305/2011 which came into force in Germany on 1 July 2013. These basic requirements introduce provisions relating not only to the safety of buildings and other construction works but also to health, durability, energy economy, protection of the environment and other important aspects in the public interest. The basic requirements are defined by essential characteristics expressed by levels or classes, or in a description. The relevant essential characteristics define the performance of the construction product. The DIN 18945, 46 and 47 outline unified test procedures describing the relevant essential characteristics of the earth building products as well as systems for assessing and verifying the constancy of their performance. The relevant systems of verification are determined by a national Technical Assessment Body (TAB), which in Germany is the Deutsches Institut für Bautechnik DIBt. T2 - 9th IMC - International Masonry Conference CY - Guimaraes, Portugal DA - 07.07.2014 KW - DIN norms KW - Germany KW - Earth blocks KW - Earth masonry mortar KW - Earth plaster mortar KW - Standards KW - Earth block masonry KW - Earth mortar PY - 2014 SN - 978-972-8692-85-8 SP - Paper ID 682, 1 EP - 10 AN - OPUS4-31140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Müller, Urs A1 - Perrone, C. A1 - Ziegert, C. T1 - Earth block masonry, rammed earth and cob: earthen components from different construction techniques and their structural performance T2 - Terra 2012 - 11th International conference on the study and conservation of earthen architecture heritage N2 - Both in developed and developing countries, modern building materials tend to be preferred to traditional earthen construction. Reasons include low durability, inadequate performance under seismic loading and, in developing countries, a wish to replace what is perceived as 'poor' with what is perceived as 'rich'. In an age when building permissions and construction standards are a must, particularly in seismic areas, even when an owner is willing to build in earth, construction approval needs to be granted: we rely on values and standards to build, but the necessary data on material properties and structural performance of earthen building techniques is scarce if compared to the abundance of data for other materials (clay brick masonry, concrete, steel) available to the engineer. At the same time, traditional builders' skills, knowledge and confidence in earthen building techniques are decreasing if not disappearing. A wallette testing campaign was thus carried out with the aim of filling this knowledge gap. Prior to the wallette campaign, material properties, including composition and physical-mechanical parameters, were determined. Compression and diagonal compression (shear) tests were then performed, and a basic analysis of the mechanical behaviour of structural elements built in cob is provided in relation to earth block (adobe) masonry and rammed earth elements. Cob, shown to have low compressive resistance, has a relatively ductile post-peak behaviour if compared to earth block masonry specimens which, as expected, show a marked brittle behaviour. In terms of shear strength, cob performs relatively well in view of its low compressive strength. The study is part of our work within the framework of the ongoing project NIKER funded by the European Commission dealing with improving the structural performance of Cultural Heritage assets in order to limit earthquake hazards. T2 - Terra 2012 - 11th International conference on the study and conservation of earthen architecture heritage CY - Lima, Peru DA - 2012-04-22 KW - Earth block KW - Rammed earth KW - Cob KW - Mechanical properties KW - Earthen architecture KW - Earth block masonry PY - 2012 SN - 978-9972-2885-5-5 IS - Theme 6 - t6_066 SP - 1 EP - 10 AN - OPUS4-30380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, U. A1 - Miccoli, Lorenzo A1 - Perrone, C. A1 - Ziegert, C. T1 - Vergleich und Modellierung der mechanischen Eigenschaften von Bauteilen aus Lehmsteinmauerwerk, Wellerlehm und Stampflehm T2 - Lehm 2012 - 6. Internationale Fachtagung für Lehmbau T2 - Lehm 2012 - 6. Internationale Fachtagung für Lehmbau CY - Weimar, Germany DA - 2012-10-05 KW - Stampflehm KW - Lehmstein KW - Mauerwerk KW - Wellerlehm KW - Mechanische Eigenschaften PY - 2012 SN - 978-3-00-039649-6 IS - Session C SP - 320 EP - 331 AN - OPUS4-26936 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroeder, H. A1 - Müller, Urs A1 - Ziegert, C. T1 - Buildingcodes and standards in earth building - current situation in Germany T2 - Earth USA 2011 - 6th International earthbuidling conference (Proceedings) T2 - Earth USA 2011 - 6th International earthbuidling conference CY - Albuquerque, NM, USA DA - 2011-09-30 KW - Lehmbau KW - Normen KW - Bauprodukte PY - 2011 SN - 978-0-9824660-2-5 SP - 140 EP - 148 AN - OPUS4-25646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroeder, H. A1 - Müller, Urs A1 - Ziegert, C. ED - Hwang, H. ED - Kim, S. ED - Guillaud, H. ED - Gandreau, D. T1 - Building codes and standards in earth building - current situation in Germany T2 - TerrAsia 2011 - International conference on earthen architecture in Asia (Proceedings) N2 - Today, building is a complicated commercial process characterised by legalised agreements between all participants. For commercial building projects, all materials and constructions have to conform to building standards and regulations. Material properties must be reproducible in standardised test procedures. This also applies for the control of the quality of production of earth building materials and constructions. Building conservation is a part of this process. Generally, national building standards have to reflect the current situation of building materials / construction systems of that country for which they have been developed. T2 - TerrAsia 2011 - International conference on earthen architecture in Asia CY - Mokpo, Korea DA - 11.10.2011 KW - Standards KW - Germany KW - International KW - DIN KW - Lehmbau KW - Normen KW - Bauprodukte PY - 2011 SN - 978-89-92760-63-8 SP - 239 EP - 246 AN - OPUS4-25451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Perrone, C. A1 - Müller, Urs A1 - Gardei, André A1 - Ziegert, C. ED - Drochytka, R. ED - Bohus, S. T1 - Structural performances of earthen building materials. A comparison between different typologies T2 - 2nd WTA - Internaitonal PhD Symposium - Building materials and buidling technology to preserve the built heritage N2 - Traditional construction techniques utilizing earthen materials are often seen as inferior compared to modern ways of building. Structural earthen elements are perceived as vulnerable towards environmental influences (moisture, frost) and in particular towards the load scenarios during earthquakes. In comparison to the recent advances in research on stone and brick masonry, knowledge on the structural performance of earthen building construction is limited and scattered. Consequently the confidence in the performance of these earthen buildings constructed in the traditional techniques during earthquakes is fairly low. The research presented here aims to make a comparison of mechanical behavior between different earth masonry material typologies, consisting of earth block masonry, rammed earth and cob. The paper has been developed in the framework of a larger research program called NIKER. BAM and other seventeen research partners from the Mediterrean area are jointly involved to develop and validate innovative materials and technologies for the systemic improvement of the seismic behavior of Cultural Heritage assets T2 - 2nd WTA - Internaitonal PhD Symposium - Building materials and buidling technology to preserve the built heritage CY - Brno, Czech Republic DA - 06.10.2011 KW - Earth masonry KW - Material test KW - Mechanical behavior KW - Cultural heritage PY - 2011 SN - 978-3-937066-21-9 SN - 0947-6830 N1 - Serientitel: WTA-Schriftenreihe – Series title: WTA-Schriftenreihe VL - 2 / Part 2 IS - 36 SP - 86 EP - 94 PB - WTA Publications AN - OPUS4-24928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Perrone, C. A1 - Müller, Urs A1 - Gardei, André A1 - Ziegert, C. T1 - Comparison of mechanical behavior of different earth masonry typologies in cultural heritage T2 - WCCE-ECCE-TCCE Joint conference 2 - Seismic protection of cultural heritage (Proceedings) N2 - The paper has been developed in the framework of a larger EC‐research program called NIKER, in which BAM and other seventeen research partners from the Mediterrean area are jointly involved. It aims to develop and validate innovative materials and technologies for the systemic improvement of the seismic behavior of Cultural Heritage assets. The death tolls brought about by recent catastrophes in developing countries where many inhabitants lived in earthen dwellings (Gujarat, India 2001, Bam, Iran 2003 and Concepción, Chile 2010 Earthquakes, Tamil Nadu 2004 Tsunami) have brought about research studies aimed at improving earth construction in terms of strength, seismic resistance and speed of construction. In comparison to the recent advances in research on stone and brick masonry, knowledge on the material properties and failure mechanisms of earthen Building construction is limited and scattered. The research presented here by aims making a comparison of mechanical behaviour between different earth masonry material typologies, consisting of earth block masonry, rammed earth and cob. T2 - WCCE-ECCE-TCCE Joint conference 2 - Seismic protection of cultural heritage CY - Antalya, Turkey DA - 31.10.2011 KW - Earth masonry KW - Material test KW - Cultural heritage KW - Seismic resistance PY - 2011 SN - 978-605-01-0188-1 SP - 25 EP - 36 AN - OPUS4-24836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -