TY - CONF A1 - Epishin, A.I. A1 - Link, T. A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Schriever, Sina T1 - Creep behaviour of the single-crystal nickel-base superalloy CMSX-4 at ultra-high homologous temperature T2 - CREEP 2015 - 13th International conference on creep and fracture of engineering materials and structures N2 - Data about the creep behaviour of metals and their alloys at temperatures close to the melting point are very limited. The reason is that most engineering alloys are used at temperatures below 0.6-0.8 of their melting point, so, Investigation of creep at higher temperatures has no practical relevance. For some special applications however it is important, in our case hot isostatic pressing (HIP) of single-crystal turbine blades cast from nickel-base superalloys. In order to remove porosity the blades are HlPed at temperatures between y'-solvus and solidus where superalloy has no strengthening y'-phase and therefore is very soft. For example, the Company Howmet Castings HIPs the superalloy CMSX-4 at the temperature 1288aC, which corresponds to a homologous temperature of about 0.97=1561 K/1612 K (solidus temperature). Therefore knowledge about the creep behaviour of CMSX-4 at this temperature and understanding of the creep mechanisms are necessary to model the kinetics of pore closure during HIP as well as to plan the Parameters of the HIP process. T2 - CREEP 2015 - 13th International conference on creep and fracture of engineering materials and structures CY - Toulouse, France DA - 31.5.2015 PY - 2015 VL - 825 SP - 19 EP - 20 AN - OPUS4-33527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epishin, A.I. A1 - Link, T. A1 - Fedelich, Bernard A1 - Svetlov, I.L. A1 - Golubovskiy, E.R. T1 - Hot isostatic pressing of single-crystal nickel-base superalloys: mechanism of pore closure and effect on mechanical properties T2 - Eurosuperalloys 2014 - 2nd European symposium on superalloys and their applications N2 - Pore annihilation was investigated in the single-crystal nickel-base superalloy CMSX-4. HIP tests at 1288 °C/103 MPa were interrupted at different times, then the specimens were investigated by TEM, metallography and density measurements. The kinetics of pore annihilation was determined. The pore closure mechanism was identified as plastic deformation on the octahedral slip systems. A model describing the kinetics of pore closure has been developed on the base of crystal plasticity and large strain theory. Mechanical tests with the superalloy CMSX-4 and the Ru-containing superalloy VGM4 showed, that HIP significantly increases the fatigue life at low temperatures but has no effect on creep strength. T2 - Eurosuperalloys 2014 - 2nd European symposium on superalloys and their applications CY - Giens, France DA - 12.05.2014 PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-316410 DO - https://doi.org/10.1051/matecconf/20141408003 N1 - Serientitel: MATEC Web of conferences – Series title: MATEC Web of conferences VL - 14 SP - 08003-1 EP - 08003-6 PB - EDP Sciences AN - OPUS4-31641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -