TY - GEN A1 - Zaghdoudi, M. A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar ED - Altenbach, H. ED - Hitzler, L. ED - Johlitz, M. ED - Merkel, M. ED - Öchsner, A. T1 - Analysis of Heterogeneous Ageing of HNBR O-Rings T2 - Lectures Notes on Advanced Structured Materials 2 N2 - Abstract Hydrogenated nitrile butadiene rubber (HNBR) elastomer was thermo-oxidatively aged at different temperatures up to 150 °C. Fourier transform infrared spectroscopy (FTIR), compression stress relaxation (CSR) and international rubber hardness degree (IRHD) microhardness were used to characterise the chemo-mechanical changes of HNBR O-rings during thermo-oxidative ageing. FTIR shows the development of carbonyl, methyl and ester groups but the nitrile content was not affected by ageing. The effect of sample geometry during CSR was investigated. CSR data were converted through integrated kinetic laws. The conversion has proven its sensibility to detect heterogeneous ageing. This was confirmed by the IRHD measure-ments across the section of O-rings. The influence of compression during ageing was assessed through IRHD measurements across the section of compressed and uncom-pressed aged O-rings. The DLO effect was more pronounced in compressed O-rings. By applying the model of Wise et al., theoretical IRHD and oxidation profiles were determined on the basis of IRHD experimental data of compressed O-rings. Good agreements between the experimental and the theoretical IRHD profiles in the core region were obtained. However, near the edge, the theoretical IRHD values were overestimated. KW - Ageing KW - Rubber seals KW - Stress relaxation KW - Modelling PY - 2024 SN - 978-3-031-49042-2 DO - https://doi.org/10.1007/978-3-031-49043-9 SN - 1869-8433 SP - 331 EP - 348 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-59769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Albouy, P.-A. A1 - Häcker, Ralf A1 - Stock, Daniel T1 - Overview of ongoing research and future prospects on polyethylene neutron shielding materials at bam T2 - PATRAM22 N2 - The extension of the interim storage period of radioactive waste before disposal will cause additional challenges for the nuclear waste management in Germany, so that an extensive knowledge of the long-term performance of casks, including their components and inventories, will be required for future extended storage licenses. Ultra-high and high molecular weight polyethylenes ((U)HMW-PE) are used for neutron shielding purposes in casks for storage and transport of spent fuel and high-level waste due to their extremely high hydrogen content. During their service life of several decades as cask components, the PE materials are exposed to neutron and gamma radiation from the radioactive inventory of the casks, mechanical assembling stresses and temperature. All these combined effects affect the material properties of such components which in turn may be crucial for some possible accident scenarios. At the Bundesanstalt für Materialforschung und -prüfung (BAM), the effects of high temperature exposure in combination with subsequent or previous irradiation were investigated with a comprehensive aging program including thermal aging at 125 °C for different aging periods up to 5 years and irradiation with doses ranging from 50 to 600 kGy. This contribution provides an overview of the ongoing research related to the structural changes of (U)HMW-PE induced by gamma irradiation and high temperature exposure and focuses on current research perspectives at BAM with regard to the prediction of the dynamic behavior of the material during extended interim storage in case of an accident scenario. First results of the coupled effect of temperature, radiation and mechanical loading will be presented. The effect of microstructural changes induced by gamma irradiation and high temperature on the mechanical behavior of (U)HMW-PE will be assessed. T2 - PATRAM22 CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - (U)HMWPE KW - Ageing KW - Irradiation KW - WAXD KW - SHPB PY - 2023 SP - 1 EP - 10 AN - OPUS4-57707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Simulation of compression set of epdm o-rings during aging T2 - Proceedings of the ASME 2022 Pressure Vessels & Piping Conference PVP2022 N2 - It is common practice in the application of finite element analysis to model compression set (CS) of elastomers during aging with two different material models according to the two-network theory of Tobolsky. The theory relies on the existence of two networks. The first one represents the original network after vulcanization and is sensitive to chain scission. The second network accounts for the formation of additional crosslinking during aging. Besides the use of user subroutines to describe the two-network model, an element overlay technique is also needed as the full set of both material behaviors did not exist for assignment to a single element. This element overlay technique is valuable for research and developmental purposes but makes extension to industrial usage quite challenging. Our goal is to simulate the CS of elastomers after long-term aging in a commercial finite element software with no need for extra subroutine codes or mesh superposition. Ethylene propylene diene (EPDM) O-rings were aged in a compressed state at 75 °C, 100 °C, 125 °C and 150 °C for up to 183 days. Investigations of the experimental test results were used to identify material models and their parameters to develop a finite element model to simulate CS. The model was implemented in the finite element software ABAQUS/Standard® with a sequential temperature-displacement coupling. Regarding the influence of temperature, the Arrhenius equation is adopted for the time-temperature relationship. The activation energy value that is required for the simulation is firstly determined from shifting the experimental CS results with the time-temperature superposition technique and plotting the shift factors in an Arrhenius diagram. The experiments were compared with the simulation results. Afterwards different activation energies were used in the simulation and discussed. A suitable choice of the activation energy value with regard to the reference temperature and the test temperature is presented. With the chosen activation energies, the match between numerical CS values after long-term aging and the experimental results was improved. T2 - ASME 2022 Pressure Vessels & Piping Conference CY - Las Vegas, USA DA - 17.07.2022 KW - Simulation KW - Compression set KW - EPDM KW - Aging PY - 2022 SP - 1 EP - 9 AN - OPUS4-57370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Understanding the recovery behaviour and the degradative processes of EPDM during ageing JF - Polymer Testing N2 - Recovery is an important measure for seal applications representing to which extent the elastomer regains its initial shape after deformation and release of an applied force. Compression set (CS) indicates the degree of recovery. Ethylene propylene diene rubber (EPDM) was aged at 75 ◦C, 100 ◦C, 125 ◦C and 150 ◦C for different ageing times up to five years and compression set measurements were performed at different times after disassembly and after additional tempering. Short- and long-term recovery up to one year after release for samples aged at 125 ◦C and 150 ◦C was also studied. To assess the curvature in the Arrhenius diagram that may occur due to non-sufficiently aged specimens, a degradation-rate based model was fitted to the CS data after tempering. For each ageing temperature, two decay fit functions were proposed, each with an activation energy and a corresponding degradative process. The influence of ageing on the leak-tightness after fast small partial release is investigated and estimated through the analysis of the shift factors from time temperature superposition (TTS) of CS measurements at different times after disassembly. Shift factors of CS measurement after 1 s and after additional tempering are in good agreement. KW - Compression set KW - Ageing KW - Recovery KW - Degradative processes KW - Leakage rate PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573699 DO - https://doi.org/10.1016/j.polymertesting.2023.107987 SN - 0142-9418 VL - 121 SP - 107987 PB - Elsevier Ltd. AN - OPUS4-57369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Brandt, Guido A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Coefficients of Friction in Dependence on Aging State of Elastomers – Experimental Identification and Numerical Simulation of the Experiment T2 - Proceedings of the ASME 2022 Pressure Vessels & Piping Conference (PVP2022) N2 - Elastomer seals are mounted as barrier seals in lid systems of containers designed for transport and disposal of negligible heat generating radioactive waste and as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). When the behavior of mounted seals under normal and hypothetical accident conditions of disposal and transport is to be simulated, a comprehensive knowledge of their complex mechanical properties at every state of aging is necessary. In previous works, BAM’s efforts in experimental investigations on specimen artificially aged at different temperatures and times and the implementation of the found results in finite element material models were presented. Additionally, our approaches to reproduce the aging process itself and to extrapolate the results of artificially accelerated aging to longer times were presented. Numerical simulations have shown that the behavior of the seal during mounting and one-sided pressurizing and the resulting performance values such as leakage rate strongly depend on the coefficient of friction (COF) between flange and seal. The friction coefficient, in turn, depends on the aging state of the elastomer material as several publications suggest (see below). Dynamic COF between an exemplary ethylene propylene diene rubber (EPDM) material and a stainless steel ball were determined by using a self-designed linear oscillation tribometer. Unaged and artificially aged EPDM specimen stored for 30 days and 100 days at a temperature of 150 °C were tested. A stainless steel ball (d=10 mm) is brought in contact with the specimen’s surface und loaded by normal forces of 2.5 N, 5 N, 10 N and 20 N. During a reciprocating movement of the EPDM sheet, the horizontal force/friction force is continuously measured, and the COF can be derived. It is well known that friction is a complex phenomenon especially in soft materials. It cannot be excluded that the measured friction force is influenced by additional force components, resulting from the ball’s grooving through the elastomer’s surface. This force depends on the penetration depth of the ball and on the resistance of the elastomer in its different states of aging. The latter results from microstructural changes i.e., chain scission and additional crosslinking that occur during aging which in turn influence the softening or hardening of the material. A finite element (FE) ABAQUS® model was developed to reproduce the measurement process. It should help to better understand the physical mechanisms and to quantify the percentage of measured forces resulting from real friction on the one hand and forces resulting from unintended side effects that could falsify the result on the other hand. The behavior of the elastomer in its different states of aging is reproduced by a FE material model already presented in previous works of BAM. T2 - ASME 2022 Pressure Vessels & Piping Conference (PVP2022) CY - Las Vegas, NV, USA DA - 17.02.2022 KW - Numerical Simulation KW - Radioactive Waste KW - Elastomers KW - Aging KW - Seal Behavior KW - Leakage Rate KW - Coefficient of Friction KW - Experiment PY - 2022 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-57093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Goral, Milan A1 - Kömmling, Anja A1 - Probst, Ulrich A1 - Wossidlo, Peter A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Langzeitversuche über 10 Jahre an Federkern-Metalldichtungen mit Aluminium- bzw. Silberummantelungen T2 - JAHRBUCH Dichten. Kleben. Polymer. 2023 N2 - Federunterstützte Metalldichtungen mit Aluminium(Al)- oder Silber(Ag)-Ummantelung werden u.a. in Behältern für Wärme entwickelnde radioaktive Abfälle eingesetzt, da diese Dichtungen eine sehr gute Dichtheit gewährleisten sowie Langlebigkeit und Beständigkeit gegenüber erhöhten Temperaturen und radioaktiver Strahlung aufweisen. Auch wenn die Sicherheit solcher Behälter und der verwendeten Dichtungen vielfach belegt wurde, sind sie Gegenstand andauernder Forschung, etwa im Hinblick auf eine absehbar benötigte verlängerte Zwischenlagerdauer. Aus diesem Grund werden an der Bundesanstalt für Materialforschung und -prüfung (BAM) im Fachbereich 3.4 „Sicherheit von Lagerbehältern“ seit über 20 Jahren Versuche an solchen Metalldichtungen durchgeführt. Dabei sollen zusätzliche Erkenntnisse hinsichtlich der Sicherheitsreserven der Dichtungen in unterstellten Störfallszenarien (axiale Bewegung des Deckelsystems bzw. Aufweitung der Nutgeometrie) und insbesondere detailliertere Erkenntnisse zum Langzeitverhalten gewonnen werden. KW - Federunterstützte Metalldichtungen KW - Transport- und Lagerbehälter für radioaktive Stoffe KW - Langzeitversuche KW - Alterung KW - Dichtheit KW - Leckagerate KW - Helium-Dichtheitsprüfung PY - 2023 VL - 2023 SP - 43 EP - 63 PB - ISGATEC GmbH CY - Mannheim AN - OPUS4-56399 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Grelle, Tobias A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar T1 - Three-dimensional thermal expansion of neat and irradiated (U)HMWPE materials at elevated temperatures JF - Polymer Testing N2 - The thermal expansion of polymeric parts can be an issue in many applications where the available space is limited, or exact dimensions of the part are required. For this study, a device was designed and built that allowed measuring the thermal expansion simultaneously in all three spatial directions on cubic samples with real-scale dimensions (78 mm edge length). The results are shown between 25 °C and 125 °C for two PE materials, one HMWPE and one tempered UHMWPE, for non-irradiated samples as well as cubes that have been irradiated with 100 and 400 kGy. The results measured with the new device were very similar to those measured with conventional thermo-mechanical analysis equipment and to literature data of UHMWPE. The HMWPE material shows a much larger thermal expansion coefficient in one direction compared to the other two directions during the first heating due to frozen stresses from the pressing step during material manufacturing. These stresses are mostly released by the expansion during the first heating, so that the expansion during the second heating is more uniform. The overall volumetric expansion is the same for both heating runs. By contrast, the tempered UHMWPE material shows no significant difference between first and second heating run, as the stresses from processing could already relax in the tempering step. The irradiation treatment does not affect the values significantly for the given test set-up. KW - Lupolen KW - Ultra high molecular weight polyethylene KW - GUR KW - Coefficient of thermal expansion KW - High temperature PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563987 DO - https://doi.org/10.1016/j.polymertesting.2022.107841 SN - 0142-9418 VL - 117 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-56398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Oxidative ageing of elastomers: Experiment and modelling JF - Continuum mechanics and thermodynamics N2 - During an extensive test programme at the Bundesanstalt für Materialforschung und prüfung, material property changes of EPDM O-rings were investigated at different ageing times and two ageing temperatures of 125∘C and 150∘C. To exclude possible diffusion-limited oxidation (DLO) effects that can distort the data, IRHD microhardness measurements were taken over the cross section of compressed O-rings. Continuous stress relaxation measurements were taken on samples free of DLO effects. The additional effect of physical processes to irreversible chemical ones during a long-term thermal exposure is quantified by the analysis of compression set measurements under various test conditions. By combining the different experimental methods, characteristic times relative to the degradation processes were determined. On the basis of experimental data, a microphysically motivated model that takes into account reversible and irreversible processes was developed. The parameter identification strategy of the material model is based on our experimental investigations on homogeneously aged elastomer O-rings. The simulated results are in good agreement with the experiments. KW - Compression stress relaxation KW - Compression set KW - IRHD microhardness KW - Modelling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545910 DO - https://doi.org/10.1007/s00161-022-01093-9 SN - 1432-0959 SP - 1 EP - 9 PB - Springer CY - Berlin AN - OPUS4-54591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - A numerical approach to correlate compression stress relaxation and compression set of elastomer O-rings with tightness T2 - Proceedings of the ASME 2021 Pressure Vessels & Piping Conference (PVP2021) N2 - The excellent mechanical properties of elastomer seals at a wide range of temperatures as well as their high versatility and recovery potential under several load conditions make these materials well suitable for the application in containers designed for transport and disposal of negligible heat generating radioactive waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered which prohibit an avoidable cask handling. An extensive knowledge of the change of the elastomer properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the safe enclosure of the radioactive material for the required time are mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have already been made and are still ongoing to scientifically support this task. Among other representative types of elastomers, specimen made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the with respect to application most important of their complex mechanical properties. Exemplary results of these investigations were used to calibrate material models implemented in the commercial finite element software ABAQUS/Standard®. The finite element model already presented in previous works uses a sequential temperature displacement coupling. The calculated compression stress relaxation (CSR) and compression set (CS) values do satisfactorily match the experimental results. In many investigations performed at BAM both values (CSR and CS) were identified as key indicators of elastomer’s long-term performance. However, the possibility to correlate these equivalent indicators with performance values such as tightness and leakage rate, measurable in the mounted state, is an important goal of our future work. In the presented study the ABAQUS® feature of “pressure penetration” is introduced in the suggested finite element model for this purpose. It provides the possibility to simulate the penetration of a gas into a possible gap between flange and O-ring causing an opening of a leakage path. Three dimensional and axis-symmetric finite element models were generated to represent flat and grooved flanges of different dimensions. The sensitivity of the feature to several input parameters is investigated and the observed behavior of the O-ring is correlated with the results of performed leakage tests. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Elastomer KW - Tightness KW - Leakage KW - Compression set KW - Compression stress relaxation PY - 2021 SN - 978-0-7918-8535-2 DO - https://doi.org/10.1115/PVP2021-61976 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Herold, Christian A1 - Völzke, Holger A1 - Wolff, Dietmar A1 - Orellana Pérez, Teresa A1 - Bollingerfehr, W. A1 - Wunderlich, A. A1 - Prignitz, S. T1 - Herleitung und Zusammenstellung der Anforderungen an Endlagerbehälter für ein HAW-Endlager in den drei potenziellen Wirtsgesteinen Steinsalz, Tonstein und Kristallingestein; Bericht zum Arbeitspaket 3 des FuE Verbundvorhabens KoBrA N2 - Der Bericht zum Arbeitspaket 3 baut auf den Ergebnissen der internationalen Recherche (AP1) sowie der Zusammenstellung der Randbedingungen und Beanspruchungsgrößen für die Endlagerbehälter (AP2) auf. Die Anforderungen an die Behälter – regulatorische, betriebliche sowie solche aus der Standortgeologie und den Einwirkungen und Prozessen, denen die Behälter ausgesetzt sind – werden hergeleitet und systematisch dargestellt. Die für das Endlagersystem zu betrachtenden Nutzungsphasen werden aus den regulatorischen Anforderungen hergeleitet und charakterisiert. Die Einwirkungen auf die Behälter in den drei potenziellen Wirtsgesteinen sowie die sich für die Erfüllung der Sicherheitsfunktionen des Behälters als Teil des Endlagersystems ergebenden Behälterfunktionen werden ebenfalls wirtsgesteins- und zeitphasenabhängig betrachtet. Schließlich werden aus den Einwirkungen auf die Behälter und den Anforderungen an die Behälterfunktionen auch quantifizierbare Behälterfunktionen für alle drei potenziellen Wirtsgesteine abgeleitet. KW - Endlager KW - Behälter KW - Sicherheitsanforderungen KW - Hochradioaktive Abfälle PY - 2020 UR - https://www.bge-technology.de/fileadmin/user_upload/MEDIATHEK/f_e_berichte/KoBrA/2020-KoBrA_Bericht_AP3.pdf N1 - Auftraggeber: Bundesministerium für Wirtschaft und Energie (BMWi), Förderkennzeichen: 02E11527 und 02E11537. SP - 1 EP - 254 PB - BGE Technology CY - Peine AN - OPUS4-53119 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -