TY - JOUR A1 - Lisec, Jan A1 - Kobelt, D. A1 - Walther, W. A1 - Mokrizkij, M. A1 - Grötzinger, C. A1 - Jaeger, Carsten A1 - Baum, K. A1 - Simon, M. A1 - Wolf, J. A1 - Beindorf, N. A1 - Brenner, W. A1 - Stein, U. T1 - Systematic Identification of MACC1-Driven Metabolic Networks in Colorectal Cancer JF - Cancers N2 - MACC1 is a prognostic and predictive metastasis biomarker for more than 20 solid Cancer entities. However, its role in cancer metabolism is not sufficiently explored. Here, we report on how MACC1 impacts the use of glucose, glutamine, lactate, pyruvate and fatty acids and show the comprehensive analysis of MACC1-driven metabolic networks. We analyzed concentrationdependent changes in nutrient use, nutrient depletion, metabolic tracing employing 13C-labeled substrates, and in vivo studies. We found that MACC1 permits numerous effects on cancer metabolism. Most of those effects increased nutrient uptake. Furthermore, MACC1 alters metabolic pathways by affecting metabolite production or turnover from metabolic substrates. MACC1 supports use of glucose, glutamine and pyruvate via their increased depletion or altered distribution within metabolic pathways. In summary, we demonstrate that MACC1 is an important regulator of metabolism in cancer cells. KW - Mass Spectroscopy KW - Metabolomics KW - Cancer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533526 DO - https://doi.org/10.3390/cancers13050978 VL - 13 IS - 5 SP - 1 EP - 22 PB - MDPI Journal Cancers AN - OPUS4-53352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tjaden, B. A1 - Baum, K. A1 - Marquardt, V. A1 - Simon, M. A1 - Trajkovic-Arsic, M. A1 - Kouril, T. A1 - Siebers, B. A1 - Lisec, Jan A1 - Siveke, J. T. A1 - Schulte, J. H. A1 - Benary, U. A1 - Remke, M. A1 - Wolf, J. A1 - Schramm, A. T1 - MYCN-induced metabolic rewiring creates novel therapeutic vulnerabilities in neuroblastoma JF - bioRxiv : The preprint server for biology N2 - MYCN is a transcription factor that is aberrantly expressed in many tumor types and is often correlated with poor patient prognosis. Recently, several lines of evidence pointed to the fact that oncogenic activation of MYC family proteins is concomitant with reprogramming of tumor cells to cope with an enhanced need for metabolites during cell growth. These adaptions are driven by the ability of MYC proteins to act as transcriptional amplifiers in a tissue-of-origin specific manner. Here, we describe the effects of MYCN overexpression on metabolic reprogramming in neuroblastoma cells. Ectopic expression of MYCN induced a glycolytic switch that was concomitant with enhanced sensitivity towards 2-deoxyglucose, an inhibitor of glycolysis. Moreover, global metabolic profiling revealed extensive alterations in the cellular metabolome resulting from overexpression of MYCN. Limited supply with either of the two main carbon sources, glucose or glutamine, resulted in distinct shifts in steady-state metabolite levels and significant changes in glutathione metabolism. Interestingly, interference with glutamine-glutamate conversion preferentially blocked proliferation of MYCN overexpressing cells, when glutamine levels were reduced. Thus, our study uncovered MYCN induction and nutrient levels as important metabolic master switches in neuroblastoma cells and identified critical nodes that restrict tumor cell proliferation. KW - Mass-spectrometry KW - Tumor metabolism KW - MYCN PY - 2018 DO - https://doi.org/10.1101/423756 SP - 1 EP - 21 PB - Cold Spring Harbor Laboratory CY - Cold Spring Harbor, NY AN - OPUS4-46815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -