TY - CONF A1 - Simon, Sebastian A1 - Meng, Birgit A1 - Selleng, Christian T1 - A new sample holder for fast xrd investigation on UHPC N2 - A new sample holder is described in this poster. It was developed in BAM for fast XRD investigation on UHPC (ultra high performance concrete). Results measuring solid, i.e. not pulverized, samples are shown. T2 - GeoBerlin 2015 CY - Berlin, Germany DA - 04.10.2015 KW - Building Materials KW - UHPC KW - X-ray diffractometry PY - 2015 AN - OPUS4-36949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Selleng, Christian A1 - Gröger, K. A1 - Fontana, Patrick A1 - Meng, Birgit A1 - Altenberger, U. T1 - Effect of 90°C thermal treatment on Ultra-High Performance Concrete T2 - GeoBerlin 2015: Dynamic Earth - from Alfred Wegener to today and beyond N2 - Ultra High Performance Concrete (UHPC) is characterized by high strength and high durability. This is achieved by an optimized grain size distribution, especially within fine grains, and addition of superplasticizer, which allow the reduction of the water/cement ratio in the cement paste and thereby the increase of the density of UHPC. Thermal treatment, i.e. curing at elevated temperature and pressure, contributes to a further increase of compressive strength. The aim of the presented study was to analyze the effect of thermal treatment at 90 ◦C and atmospheric pressure on UHPC samples. Varying factors were the age of the samples when heat treatment started (initial storage time), the duration of heat treatment and the type of heat treatment. It was applied in three ways: 1. treated without any protection, 2. sealed in plastic foil and 3. treated in hot water. Afterwards the samples were analyzed with respect to their mechanical properties and their phase composition. Furthermore, the weight (water absorption) of the samples was observed over 28 days and was correlated with the strength test results. The development of strength depends on the combination of initial storage time and the duration of heat treatment and is also influenced by the type of thermal treatment. The highest compressive strengths have been observed by implementing the hot water treatment. Thereby the weight of the samples increase due to additional absorbed water. This enables an increased hydration of cement clinker inducing a higher strength. T2 - GeoBerlin 2015: Dynamic Earth - from Alfred Wegener to today and beyond CY - Berlin, FU Berlin DA - 04.10.2015 PY - 2015 AN - OPUS4-34504 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -