TY - JOUR A1 - Paskin, Alice A1 - Couasnon, Thaïs A1 - Blukis, Roberts A1 - Perez, Jeffrey Paulo H. A1 - Reinsch, Stefan A1 - Roddatis, Vladimir A1 - Syczewski, Marcin A1 - Benning, Liane G. T1 - Temperature-Induced Phase Transitions of Vivianite: In Situ Analysis of a Redox-Driven Crystallization N2 - We document a solid-state, temperature-dependent (25−700 °C), multistage redox transformation of crystalline ferrous iron phosphate, vivianite (Fe3(PO4)2·8H2O). Under anoxic conditions, vivianite breaks down at T > 250 °C into an anhydrous, amorphous intermediate Fe3(PO4)2 phase, yet the bulk shape and morphology of the starting vivianite crystals were retained. This amorphous intermediate phase remained stable until T > 500 °C, after which a redox-dependent crystallization into two different minerals was observed. Under anoxic conditions, the amorphous ferrous intermediate (Fe3(PO4)2) transformed into the crystalline ferrous phosphate (graftonite, (Fe2+)3(PO4)2), while under oxic conditions it crystallized into a ferric phosphate (rodolicoite, Fe3+PO4). Graftonite formation occurs via an exothermic molar enthalpy (ΔHcryst) of −16.7 ± 0.2 kJ mol−1. Rietveld refinements of the two crystalline endmembers (vivianite and graftonite) revealed a unit cell volume decrease of ∼3.1% during the transformation, which was observed by in situ electron microscopic observations as an overall shrinking of the initial vivianite crystals. Despite volume loss and bubble-like features, the original vivianite shape was preserved, indicating a solid-state pseudomorphic transformation. Ex situ XRD and TEM-EELS analyses confirmed the ferrous-to-ferric oxidation, forming rodolicoite, through changes in the Fe geometry and oxidation state. KW - Vivianite KW - Graftonite KW - Crystallization enthalpy KW - Ferrous phosphates PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640782 DO - https://doi.org/10.1021/acs.inorgchem.5c02399 SN - 0020-1669 VL - 46 IS - 36 SP - 18227 EP - 18236 PB - American Chemical Society (ACS) AN - OPUS4-64078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan T1 - Robot-assisted compositional screening in the System Na2O-Al2O3-B2O3-SiO2 N2 - The system Na2OB2O3SiO2 (NBS) is the basis of many industrial glass applications and therefore one of the most studied systems at all. Glass formation is possible over a wide compositional range, but the system also contains ranges of pronounced phase separation and crystallization tendency. Even small addition of Al2O3can change this behavior essentially. As the Na2OAl2O3B2O3SiO2 (NABS) system is also known as the basis for glasses in strength-relevant applications, the behavior during the transition from the NBS system to the NABS system is of interest. Therefore, some small step melt series in these systems were studied using the robotic glass melting system at the Federal Institute for Materials Research and Testing (BAM, Division Glasses). For these series the small step changes of glass transition temperature, crystallization behavior as well as glass density were studied. Additionally, experimental data were compared with their modeled counterparts. T2 - 98. Glastechnische Tagung CY - Goslar, Germany DA - 26.05.2025 KW - Sodium alumino boro silicate glasses KW - Glass transition temperature KW - Density KW - Robotic melting PY - 2025 AN - OPUS4-64076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Ya‐Fan A1 - Arendt, Felix A1 - Bornhöft, Hansjörg A1 - de Camargo, Andréa S. S. A1 - Deubener, Joachim A1 - Diegeler, Andreas A1 - Gogula, Shravya A1 - Contreras Jaimes, Altair T. A1 - Kempf, Sebastian A1 - Kilo, Martin A1 - Limbach, René A1 - Müller, Ralf A1 - Niebergall, Rick A1 - Pan, Zhiwen A1 - Puppe, Frank A1 - Reinsch, Stefan A1 - Schottner, Gerhard A1 - Stier, Simon A1 - Waurischk, Tina A1 - Wondraczek, Lothar A1 - Sierka, Marek T1 - Ontology‐Based Digital Infrastructure for Data‐Driven Glass Development N2 - The development of new glasses is often hampered by inefficient trial‐and‐error approaches. The traditional glass manufacturing process is not only time‐consuming, but also difficult to reproduce with inevitable variations in process parameters. These challenges are addressed by implementing an ontology‐based digital infrastructure coupled with a robotic melting system. This system facilitates high‐throughput glass synthesis and ensures the collection of consistent process data. In addition, the digital infrastructure includes machine learning models for predicting glass properties and a tool for extracting patent information. Current glass databases have significant gaps in the relationships between compositions, process parameters, and properties due to inconsistent studies and nonconforming units. In addition, process parameters are often omitted, and even original literature references provide limited information. By continuously expanding the database with consistent, high‐quality data, it is aimed to fill these gaps and accelerate the glass development process. KW - Digitalisation KW - Data-driven glass development KW - Ontology PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625844 DO - https://doi.org/10.1002/adem.202401560 SN - 1527-2648 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-62584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan T1 - Oriented Surface Crystallization in Glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. For silicate glasses we found a good correlation between the calculated surface energy of crystal faces and oriented surface nucleation. Surface energies were estimated assuming that crystal surfaces resemble minimum energy crack paths along the given crystal plane. This concept was successfully applied at the Institute of Physics of Rennes in calculating fracture surface energies of glasses. Several oriented nucleation phenomena can be herby explained assuming that high energy crystal surfaces tend to be wetted by the melt. This would minimize the total interfacial energy of the nucleus. Furthermore, we will discuss the evolution of the microstructure and its effect on the preferred crystal orientation. T2 - 13th International Symposium on Crystallization in Glasses and Liquids CY - Orléans, France DA - 24.09.2024 KW - Surface crystallization KW - Surface energy KW - Crystal orientation KW - Silicate glass PY - 2024 AN - OPUS4-62219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan T1 - Oriented Surface Crystallization in Glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. For silicate glasses we found a good correlation between the calculated surface energy of crystal faces and oriented surface nucleation. Surface energies were estimated assuming that crystal surfaces resemble minimum energy crack paths along the given crystal plane. This concept was successfully applied at the Institute of Physics of Rennes in calculating fracture surface energies of glasses. Several oriented nucleation phenomena can be herby explained assuming that high energy crystal surfaces tend to be wetted by the melt. This would minimize the total interfacial energy of the nucleus. Furthermore, we will discuss the evolution of the microstructure and its effect on the preferred crystal orientation. T2 - ACerS GOMD 2024- Glass & Optical Materials Division Meeting CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Surface nucleation KW - Oriented surface crystallization KW - Surface energy PY - 2024 AN - OPUS4-60238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan T1 - Orientierte Oberflächenkristallisation in Gläsern N2 - Bislang wird das Phänomen der orientierten Oberflächenkristallisation kontrovers diskutiert und entsprechende Studien beschränken sich auf nur wenige Gläser. Für Silikatgläser haben wir eine gute Korrelation zwischen der berechneten Oberflächenenergie von Kristallflächen und der orientierten Oberflächenkeimbildung gefunden. Die Oberflächenenergien wurden unter der Annahme abgeschätzt, dass die Kristalloberflächen bei der Keimbildung den Kristallebenen mit minimaler Energie entsprechen, denen ein Riss beim Bruch folgt. Dieses Konzept wurde am Institut für Physik in Rennes erfolgreich bei der Berechnung der Bruchflächenenergien von Gläsern angewandt. Mehrere orientierte Keimbildungsphänomene lassen sich dadurch erklären, dass man annimmt, dass Kristalloberflächen mit hoher Energie dazu neigen, von der Schmelze benetzt zu werden. Dies minimiert die gesamte Grenzflächenenergie des Keims. Darüber hinaus werden wir die Entwicklung der Mikrostruktur beim weiteren Kristallwachstum und ihre Auswirkungen auf die bevorzugte Kristallorientierung diskutieren. T2 - 21. Treffen des DGG-DKG Arbeitskreises „Glasig-kristalline Multifunktionswerkstoffe“ CY - Mainz, Germany DA - 22.02.2024 KW - Oberflächenkeimbildung KW - Kristallorientierung KW - Grenzflächenenergie PY - 2024 AN - OPUS4-60237 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gomes Fernandes, Roger A1 - Al-Mukadam, Raschid A1 - Bornhöft, Hansjörg A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Selle, Susanne A1 - Deubener, Joachim T1 - Viscous Sintering of Acid Leached Glass Powders N2 - The process of viscous flow sintering is a phenomenon that is closely linked to the surface properties of the glass particles. In this work, we studied the extreme case of acid-leaching of soda-lime-silicate glass beads of two different particle size distributions and its effects on non-isothermal viscous sintering of powder compacts. Depth profiling of the chemical composition after leaching revealed a near-surface layer depleted in alkali and alkaline earth ions, associated with concurrent hydration as mass loss was detected by thermogravimetry. Heating microscopy showed that acid treatment of glasses shifted the sinter curves to higher temperatures with increasing leaching time. Modelling of the shrinkage with the cluster model predicted a higher viscosity of the altered surface layer, while analysis of the time scales of mass transport of mobile species (Na+, Ca2+ and H2O) during isochronous sintering revealed that diffusion of Na+ can compensate for concentration gradients before sintering begins. Also, exchanged water species can diffuse out of the altered layer, but the depletion of Ca2+ in the altered surface layer persists during the sinter interval, resulting in a glass with higher viscosity, which causes sintering to slow down. KW - Glass powder KW - Viscous sintering KW - Acid-leaching KW - Sinter retardation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589008 DO - https://doi.org/10.52825/glass-europe.v1i.681 VL - 1 SP - 37 EP - 53 AN - OPUS4-58900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinsch, Stefan A1 - Welter, T. A1 - Müller, Ralf A1 - Deubener, J. T1 - Hydrogen Permeability of Tectosilicate Glasses for Tank Barrier Liners N2 - The permeation of hydrogen gas was studied in meta-aluminous (tectosilicate) glass powders of Li2O×Al2O3×SiO2 (LAS), Na2O×Al2O3×SiO2 (NAS) and MgO×Al2O3×SiO2 (MAS) systems by pressure loading and vacuum extraction in the temperatures range 210–310 °C. With this method, both the solubility S and the diffusivity D were determined, while the permeability was given by the product SD. For all glasses, S was found to decrease with temperature, while D increased. Since the activation energy of diffusion of H2 molecules exceeded that of dissolution, permeation increased slightly with temperature. When extrapolated to standard conditions (25 °C), the permeability of tectosilicate glasses was found to be only 10-22–10-24 mol H2 (m s Pa)-1, which is 8–10 magnitudes lower than most polymers. Thin glass liners of these compositions are expected to be the most effective barrier for tanks of pressurised hydrogen. KW - Hydrogen permeation KW - Aluminosilicate glasses KW - Hydrogen storage tank KW - Glass liner PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587284 DO - https://doi.org/10.52825/glass-europe.v1i.425 VL - 1 SP - 1 EP - 11 AN - OPUS4-58728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan T1 - A new robot-assisted compositional screening method N2 - The system Na2O.B2O3-SiO2 (NBS) is the basis of many industrial glass applications and therefore one of the most studied systems at all. Glass formation is possible over a wide compositional range, but the system also contains ranges of pronounced phase separation and crystallization tendency. Despite its importance, experimental data are limited to few compositional areas. The general understanding and modelling of glass formation, phase separation, and crystallization in this system would therefore be easier if small step melt series could be studied. The efficient melting of such glass series is now possible with the new robotic glass melting system at the Federal Institute for Materials Research and Testing (BAM, Division Glasses). Using three exemplary joins within this NBS system, the small step changes of glass transition temperature (Tg), crystallization behavior as well as glass density (Roh) was studied. Additionally, experimental Tg and Roh data were compared with their modeled counterparts using SciGlass and a newly developed DFT model, respectively. T2 - Annual meeting of the French Union for Science and Glass Technology (USTV) and the 96th Annual Meeting of the German Society of Glass Technology - USTV-DGG joint meeting. CY - Orléans, France DA - 22.05.2023 KW - Robot-assisted galss melting KW - Sodiumborosilicate glasses KW - Density KW - Glass transformation temperature KW - Property simulation PY - 2023 AN - OPUS4-58724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abel, Andreas A1 - Rosalie, Julian A1 - Reinsch, Stefan A1 - Zapala, Pawel A1 - Michels, Heiner A1 - Skrotzki, Birgit T1 - Influence of Mo and B additions in intermetallic near-Fe3Al alloys on microstructure and mechanical properties N2 - Iron aluminides, already reported in the late 19th century, did not cease to attract the interest of scientists and engineers ever since. Besides good oxidation resistance, low density and resource availability, potentials for hightemperature strengths that compete with high-alloy steels were unlocked by low alloy contents. Still, research on alloy design continues, as alloying usually comes at the price of brittleness in low-temperature regimes. A potential candidate is the quinary Fe–Al–Mo–Ti–B system which is strengthened by solid solution and eutectic borides. It was shown to have good strength and outstanding creep resistance under compressive loading up to elevated temperatures. Although the individual effect of alloy additions is well understood in iron aluminides, little is known about the combined effects of alloying concentrations on microstructure, phase stability and mechanical properties. Therefore a systematic study of two Ti-doped near-Fe3Al alloys with varying contents of Mo (2–4 at.%) and B (0.5–1 at.%) was conducted. In total eight different alloys were fabricated by investment casting into ceramic shell molds. Alloys were characterized and compared by grain size, phase transitions, microstructure evolution as well as elemental compositions and volume fractions of phases. For mechanical characterization, macrohardness and microhardness tests as well as tensile tests at ambient and high tempera tures were conducted. Independent of alloy additions, alloys with 24–25 at.% Al exhibit superior proof strength due to a higher matrix hardness. Decreasing B content generally decreases strength by lower secondary phase fractions which contribute via particle hardening. Reducing Mo content decreases both the solute concentration in the matrix and secondary phase fractions. Surprisingly, strength is similar or even superior to alloys with higher Mo content. Strength relations are discussed with a focus on solid-solution hardening theory and other competing strengthening mechanisms. KW - Materials Chemistry KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials KW - General Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585284 DO - https://doi.org/10.1016/j.intermet.2023.108074 VL - 163 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-58528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -