TY - CONF A1 - Rübner, Katrin A1 - Peplinski, Burkhard A1 - Hempel, S. A1 - Schnell, A. A1 - Müller, A. T1 - Novel lightweight aggregates from masonry rubble T2 - 1st International conference on the chemistry of construction materials (Proceedings) N2 - Most lightweight aggregates (LWA) are produced by thermal Treatment of natural raw materials such as clay and shale. In addition to the high energy costs thereby incurred, the availability of suitable raw materials is limited. Other LWA manufactured from industrial by-products and wastes do not always meet the quality criteria for use in high-Quality lightweight concrete. A real alternative is the use of novel lightweight aggregates (referred to as LWA, aggregates and granules) made from mineral construction and demolition waste. An appropriate manufacturing technology has recently been developed in the framework of a German research project /1, 2/. Masonry rubble of variable grain size containing different amounts of brick material (25 to 70 %) serves as raw material. The LWA are obtained in a multistage manufacturing process by a thermal or hydrothermal treatment, which causes the expansion and the hardening of the material. The novel LWA meet the acceptance criteria for conventional lightweight aggregates. They are suitable for the production of lightweight concrete /2-6/. However to create tailor-made LWA from masonry rubble, the novel expanded materials and the influence of manufacturing conditions have to be understood in more detail. This paper reports on ongoing investigations of the chemico-mineralogical composition and microstructure of the novel LWA and focuses on the results of Chemical analyses, XRD, ESEM, TG/DTA and fusibility tests. T2 - 1st International conference on the chemistry of construction materials CY - Berlin, Germany DA - 2013-10-07 KW - Lightweight aggregates KW - Lightweight concrete KW - Masonry rubble KW - Construction and demolition waste KW - Recycling KW - Sustainability PY - 2013 SN - 978-3-936028-75-1 N1 - Serientitel: GDCh-Monographien – Series title: GDCh-Monographien VL - 46 SP - 27 EP - 30 AN - OPUS4-30067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Müller, Ralf A1 - Schadrack, Reinhard A1 - Michaelis, Matthias A1 - Emmerling, Franziska A1 - Reuther, H. A1 - Menzel, Michael T1 - Evidence of formation of the tridymite form of AlPO4 in some municipal sewage sludge ashes JF - Powder diffraction N2 - Evidence is provided that the tridymite component observed in the X-ray diffraction patterns of some sewage sludge ashes (SSAs) should not be interpreted as the tridymite modification of SiO2 but as the tridymite form of AlPO4. This proof is based on a combined X-ray Powder Diffraction (XRD), X-ray fluorescence (XRF) and Mossbauer spectroscopy investigation of two SSAs produced at two fluidized bed incineration facilities, located in different municipalities and operated differently. The structural and chemical characterization was carried out on the 'as received' SSA samples as well as on the residues of these two SSAs pretreated by leaching in citric acid. In addition, direct proof is presented that the tridymite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850 °C) typical for fluidized bed incinerators. KW - Aluminium phosphate KW - Ash KW - Fly ash KW - Incinerator ash KW - Sewage sludge ash KW - Tridymite form PY - 2013 DO - https://doi.org/10.1017/S0885715613000869 SN - 0885-7156 VL - 28 IS - S2 SP - S425 EP - S435 PB - JCPDS CY - Swarthmore, Pa. AN - OPUS4-29703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -