TY - CONF A1 - Mekonnen, Tessema Fenta A1 - Byrne, Liam A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Transformation products of pesticides: simulation and detection N2 - Pesticides including fungicides, herbicides and insecticides are among primary residues detected in food and feed. They are transformed to a variety of products due to metabolic reactions in living organisms, microbial activities, industrial processes and photochemical reactions. To understand metabolic transformation products (TPs), in-vitro and in-vivo methods were used for a long period of time. However, these conventional methods are hampered by the long-time of analysis and by the matrix complexity. Nowadays, online coupling of electrochemistry with mass spectrometry is a technique of interest for fast prediction/ simulation of metabolic TPs and to understand the mechanism of metabolic processes. The main objective of this work was to understand the mechanism of fluopyram (fungicide) and chlorpyrifos (insecticide) metabolism and to identify TPs by electrochemistry coupled to liquid chromatography-mass spectrometry (EC-LC-MS). Additionally, TPs of fluopyram by photochemical reaction have been investigated. Furthermore, the TPs and parent compounds in real food matrices were investigated by LC-MS/MS. Phase-I metabolism via N- and O-dealkylation, P-oxidation and hydroxylation mechanisms were successfully simulated/predicted by EC-LC-MS. Additionally, metabolites produced by human and rat liver microsomes were identified by LC-MS/MS and high resolution mass spectrometry (HR-MS) and simulated with EC oxidation products. It is known that some phase-I metabolites are further conjugated with different biomolecules such as glucoside and glutathione. Phase-II metabolism was simulated by trapping the oxidized products (phase-I) online by biomolecules and allowing them to react in the loop before the electrospray ionization interface of the MS. Standard solution of fluopyram was irradiated with a medium pressure Hg-lamp (150 W) at 12.5 0C for 2 hrs and aliquots were characterized by LC-MS/MS. In conclusion, the EC-LC-MS method enables fast, cost effective and matrix free detection and prediction of metabolic pathways compared to in-vitro assays. Its versatilities to synthesis reference substances and metabolites for off-line characterization (such as NMR and HR-MS) and possibilities of determining fast reactive intermediates make EC-LC-MS more advantageous than in-vitro assays. T2 - XIX EUROANALYSIS:Europe's Analytical Chemistry Meeting CY - Stockholm, Sweden DA - 28.08.2017 KW - Metabolism KW - EC/LC/MS KW - Transformation product KW - Electrochemical oxidation KW - Photooxidation PY - 2017 AN - OPUS4-42580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mekonnen, Tessema Fenta A1 - Bayrne, Liam A1 - Koch, Matthias A1 - Panne, Ulrich T1 - Electrochemistry coupled online to mass spectrometry for prediction of metabolic transformation processes of pesticides N2 - Nowadays, electrochemistry coupled online to mass spectrometry (EC-MS) or to liquid chromatography-mass spectrometry (EC-LC-MS) is a technique of interest to investigate metabolic transformation of xenobiotics in living organisms. It enables the production of redox products in an electrochemical cell, the separation by an analytical column and the detection by mass spectrometry online. Furthermore, EC-LC-MS enables to determine short lived transformation products (TPs) and their bioconjugates in a fully automated way. Although the EC-MS selectivity is incomparable to enzymatic reactions, it is advantageous by reducing analysis time and matrix complexity compared to cytochrome based metabolism. However, in the development of EC-MS, most efforts are devoted for prediction of drug metabolism in the human body and there is very limited work on agrochemicals in general. The main objective of this work was to develop an online EC-LC-MS method that could predict the metabolism of fluopyram (fungicide) and chlorpyrifos (insecticide). Oxidation products were produced by using a boron doped diamond electrode and characterized by either online LC-MS or offline LC-MS/MS. After incubation with rat and human liver microsomes, different targeted and suspected metabolites were identified by LC-MS/MS and high resolution-mass spectrometry (HR-MS) and compared with the EC based methods. Additionally, conjugation reactions with a variety of biomolecules such as glucoside and glutathione were investigated by trapping the oxidized species before entering to mass spectrometry. In summary, phase-I metabolism by N-dealkylation, O-dealkylation, P-oxidation, hydroxylation and dearylation and phase-II metabolism by conjugation with glutathione mechanisms were successfully mimicked by EC-LC-MS. Fluopyram is primarily metabolized to 7- and 8-mono- hydroxyl, 7,8-di-hydroxyl and 2-trifluoromethyl benzamide, and chlorpyrifos is metabolized to chlorpyrifos oxon, trichloropyridinol, diethylthiophosphate and diethylphosphate. T2 - 13th Annual LC-MS/MS Workshop on Environmental and Food Safety CY - Buffalo, NY, USA DA - 11.06.2017 KW - Biotransformation KW - Transformation products KW - EC-LC-MS KW - Photodegradation PY - 2017 AN - OPUS4-40601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mekonnen, Tessema Fenta A1 - Koch, Matthias A1 - Panne, Ulrich T1 - Metabolic transformation products of pesticides by electrochemical cell coupled to LC-MS (EC-LC-MS) N2 - Metabolic transformation products (TPs) of the insecticide chlorpyrifos (CPF), the new fungicide fluopyram (FLP) and the broad-spectrum herbicide, glyphosate (GLP), were studied by electrochemistry coupled to mass spectrometry (EC-MS) for the first time. Phase I metabolites of the three pesticides from rat liver in-vitro assay experiments were studied by LC-MS/MS and compared to electrochemically oxidized products from EC-MS. Known metabolites from S-oxidation, O-dealkylation and hydroxylation of the insecticide chlorpyrifos have been identified by EC-MS and simulated to in-vitro assays. Chlorpyrifos-oxon (CPF-oxon), diethylthiophosphate (DETP), 3,5,6-trichloropiridinol (TCP), diethylphosphate (DEP) and 2,3,5-trichloropyridine (TCPy) were the main EC oxidative TPs and in-vitro assay metabolites of CPF which was also reported by Choe et al.. Fluopyram was extensively converted to a number of electrochemical products including mono- and dihydroxylated derivatives and yet unidentified TPs. Rat liver microsomal assay experiments showed mainly hydroxylated metabolites of FLP which was also reported by the European Food Safety Agency (EFSA). Aminomethyl phosphonic acid (AMPA) was the main TP of glyphosate detected from both EC-MS analysis and in-vitro assay tests. A number of TPs of CPF, FLP and GLP have been identified by electrochemistry online mass spectrometry and compared to in-vitro assays. Using electrochemistry upfront MS enables fast and matrix free prediction of metabolic pathways, transformation products and/or fate of pesticides. Further studies will focus on structural characterization of detected compounds, phase II metabolites and investigation of real samples. T2 - 9th European Conference on Pesticides and Related Organic Micropollutants in the Environment: 15th Symposium on Chemistry and Fate of Modern Pesticides CY - Santiago de Compostela, Spain DA - 04.10.2016 KW - EC-MS KW - Pesticides KW - Transformation products (TPs) KW - Metabolites PY - 2016 AN - OPUS4-37707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -