TY - CONF A1 - Pospiech, D. A1 - Fischer, O. A1 - Korwitz, A. A1 - Hoffmann, T. A1 - Köppl, T. A1 - Altstädt, V. A1 - Ciesielski, M. A1 - Döring, M. A1 - Brehme, Sven A1 - Schartel, Bernhard A1 - Vollmerhausen, D. T1 - Designed flame retardancy with phosphorus polymers N2 - Polymeric flame retardants offer the possibility to match effective flame retardancy with the requirements of new regulations. Synthesis, properties and efficiency in polymer matrices are discussed for two systems, epoxy resins as well as poly(butylene terephthalate). T2 - 25th Annual conference: Recent advances in flame retardancy of polymeric materials CY - Stamford, Connecticut, USA DA - 18.05.2014 KW - Flame retardancy KW - Phosphorus polymer KW - Poly(butylene terephthalate) KW - Epoxy resin PY - 2014 SP - 1 EP - 5 AN - OPUS4-30951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brehme, Sven A1 - Köppl, T. A1 - Schartel, Bernhard A1 - Altstädt, V. T1 - Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites N2 - Aluminium diethylphosphinate (AlPi-Et) and inorganic aluminium phosphinate with resorcinol-bis(di-2,6-xylyl phosphate) (AlPi-H+RXP) were compared with each other as commercially available halogen-free flame retardants in poly(butylene terephthalate) (PBT) as well as in glass-fibre-reinforced PBT (PBT/GF). Pyrolysis behaviour and flame retardancy performance are reported in detail. AlPi-H+RXP released phosphine at very low temperatures, which can become a problem during processing. AlPi-Et provided better limiting oxygen index (LOI) values and UL 94 ratings for bulk and PBT/GF than AlPi-H+RXP. Both flame retardants acted via three different flame-retardancy mechanisms in bulk as well as in PBT/GF, namely, flame inhibition, increased amount of char, and a protection effect of the char. AlPi-Et was more efficient in decreasing the total heat evolved of PBT in the cone calorimeter test. AlPi-H+RXP reduced the peak heat release rate of PBT more efficiently than AlPi-Et. An optimum loading of AlPi-Et in PBT/GF was found, which was below the supplier's recommendation. This loading provides a maximum increase in LOI and a maximum decrease in total heat evolved. KW - Aluminium phosphinate KW - Flame retardancy KW - Glass-fibre composite KW - Poly(butylene terephthalate) PY - 2014 U6 - https://doi.org/10.1515/epoly-2014-0029 SN - 1618-7229 VL - 14 IS - 3 SP - 193 EP - 208 PB - De Gruyter CY - [S.l.] AN - OPUS4-30648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppl, T. A1 - Brehme, Sven A1 - Pospiech, D. A1 - Fischer, O. A1 - Wolff-Fabris, F. A1 - Altstädt, V. A1 - Schartel, Bernhard A1 - Döring, M. T1 - Influence of polymeric flame retardants based on phosphorus-containing polyesters on morphology and material characteristics of poly(butylene terephthalate) N2 - Flame retarded poly(butylene terephthalate) (PBT) is required for electronic applications and is mostly achieved by low molar mass additives so far. Three phosphorus-containing polyesters are suggested as halogen-free and polymeric flame retardants for PBT. Flame retardancy was achieved according to cone calorimeter experiments showing that the peak heat release rate and total heat evolved were reduced because of flame inhibition and condensed-phase activity. The presented polymers containing derivatives of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide form immiscible blend systems with PBT. Shear-rheology shows an increase in storage moduli at low frequencies. This is proposed as quantitative measure for the degree of phase interaction. The phase structure of the blends depends on the chemical structure of the phosphorus polyester and was quite different, depending also on the viscosity ratio between matrix and second phase. A lower viscosity ratio leads to two types of phases with spherical and additionally continuous droplets. Addition of the flame retardants showed no influence on the dielectric properties but on the mechanical behavior. The polymeric flame retardants significantly diminish the impact strength because of several reasons: (1) high brittleness of the phosphorus polyesters themselves, (2) thermodynamic immiscibility, and (3) weak phase adhesion. By adding a copolymer consisting of the two base polymers to the blend, an improvement of impact strength was obtained. The copolymer particularly acts as compatibilizer between the phases and therefore leads to a smaller phase size and to a stronger phase adhesion due to the formation of fibrils. KW - Polyesters KW - Blends KW - Miscibility KW - Rheology KW - Flame retardance PY - 2013 U6 - https://doi.org/10.1002/app.38520 SN - 0021-8995 SN - 1097-4628 VL - 128 IS - 5 SP - 3315 EP - 3324 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-27957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brehme, Sven A1 - Köppl, T. A1 - Schartel, Bernhard A1 - Fischer, O. A1 - Altstädt, V. A1 - Pospiech, D. A1 - Döring, M. T1 - Phosphorus polyester - an alternative to low-molecular-weight flame retardants in poly(butylene terephthalate)? N2 - Pyrolysis, fire behaviour and mechanical properties of a blend of poly(butylene terephthalate) (PBT) with a phosphorus polyester (PET-P-DOPO) are investigated and compared with PBT/aluminium diethylphosphinate (AlPi-Et) composites. The PBT/PET-P-DOPO is immiscible and exhibits gas-phase and condensed-phase activity, whereas AlPi-Et in PBT results mainly in flame inhibition. Only higher loadings of AlPi-Et yield significant condensed-phase activity. Using the same phosphorus content, PBT/PET-P-DOPO and PBT/AlPi-Et exhibit similar reductions in fire load (22%) and flame spread (17% assessed by fire growth rate, FIGRA), compared with PBT. In contrast to AlPi-Et, the addition of PET-P-DOPO does not decrease the tensile strength of PBT. Thus, PET-P-DOPO is an interesting alternative to low-molecular-weight flame retardants. KW - Aluminium phosphinate KW - Blends KW - 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide KW - Flame retardance KW - Polyesters PY - 2012 U6 - https://doi.org/10.1002/macp.201200072 SN - 1022-1352 SN - 1521-3935 VL - 213 IS - 22 SP - 2386 EP - 2397 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-26982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppl, T. A1 - Brehme, Sven A1 - Wolff-Fabris, F. A1 - Altstädt, V. A1 - Schartel, Bernhard A1 - Döring, M. T1 - Structure-property relationships of halogen-free flame-retarded poly(butylene terephthalate) and glass fiber reinforced PBT N2 - Flame retardancy for thermoplastics is a challenging task where chemists and engineers work together to find solutions to improve the burning behavior without strongly influencing other key properties of the material. In this work, the halogen-free additives aluminum diethylphosphinate (AlPi-Et) and a mixture of aluminum phosphinate (AlPi) and resorcinol-bis(di-2,6-xylyl phosphate) (AlPi-H + RXP) are employed in neat and reinforced poly(butylene terephthalate) (PBT), and the morphology, mechanical performance, rheological behavior, and flammability of these materials are compared. Both additives show submicron dimensions but differ in terms of particle and agglomerate sizes und shapes. The overall mechanical performance of the PBT flame-retarded with AlPi-Et is lower than that with AlPi-H-RXP, due to the presence of larger agglomerates. Moreover, the flow behavior of the AlPi-Et/PBT materials is dramatically changed as the larger rod-like primary particles build a percolation threshold. In terms of flammability, both additives perform similar in the UL 94 test and under forced-flaming combustion. Nevertheless, AlPi-Et performs better than AlPi-H + RXP in the LOI test. The concentration required to achieve acceptable flame retardancy ranges above 15 wt %. KW - Polyesters KW - Fibers KW - Morphology KW - Structure–property relations KW - Flame retardance PY - 2012 U6 - https://doi.org/10.1002/app.34910 SN - 0021-8995 SN - 1097-4628 VL - 124 IS - 1 SP - 9 EP - 18 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-25253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppl, T. A1 - Wolff-Fabris, F. A1 - Altstädt, V. A1 - Ciesielski, M. A1 - Bykov, Y. A1 - Döring, M. A1 - Fischer, O. A1 - Brehme, Sven A1 - Schartel, Bernhard T1 - Comparison of Low-molecular and Polymeric Flame Retardants for Poly(butylene terephthalate) T2 - 12th biennial international Bayreuth Polymer Symposium, BPS'11 CY - Bayreuth, Germany DA - 2011-09-11 PY - 2011 AN - OPUS4-24764 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Brehme, Sven A1 - Schartel, Bernhard A1 - Bykov, Y. A1 - Ciesielski, M. A1 - Döring, M. A1 - Fischer, O. A1 - Pospiech, D. A1 - Köppl, T. A1 - Altstädt, V. T1 - Flame retardancy mechanisms and performance of a halogen-free phosphorus polyester in PBT N2 - PET-P-DOPO is a phosphorus-containing polyester prepared from the glycol ether of the hydroquinone derivative of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and dimethyl terephthalate. PET-P-DOPO and a blend of PBT with PET-PDOPO were investigated with respect to pyrolysis and fire behavior. PET-P-DOPO achieves a V-0 rating in the UL 94 test and exhibits a high LOI of 39.3%. The outstanding flame-retardant properties of PET-P-DOPO are the result of three different mechanisms (flame inhibition, charring and a protection effect of the intumescent char) that are active in PET-P-DOPO. The fire load and the peak of heat release rate (pHRR) are reduced to 34% and 17%, respectively. The char exhibits an intumescent multicellular structure enabling it to act as an efficient protection layer. As PET-P-DOPO is immiscible with PBT, the blend shows a lower breaking elongation than pure PBT. Compared to pure PET-P-DOPO, the flame retardancy of the blend is decreased according to the fraction of PET-P-DOPO used. Nevertheless, the flame-retardancy of PET-P-DOPO in the blend was good enough to compete with PBT flame-retarded by AlPi-Et (aluminum diethylphosphinate) that was used as a Benchmark. KW - PBT KW - DOPO KW - Flame retardancy PY - 2011 SN - 1-59623-795-3 SP - 1 EP - 15 CY - Wellesley, USA AN - OPUS4-24617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppl, T. A1 - Altstädt, V. A1 - Ciesielski, M. A1 - Bykov, Y. A1 - Döring, M. A1 - Fischer, O. A1 - Pospiech, D. A1 - Brehme, Sven A1 - Schartel, Bernhard T1 - Influence of solid and polymeric halogen-free flame retardants on the structure-property relationships of Poly(Butylene Terephthalate) T2 - 13th European Meeting on Fire Retardant Polymers, FRPM CY - Alessandria, Italy DA - 2011-06-26 PY - 2011 AN - OPUS4-24074 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -