TY - JOUR A1 - Grabolle, Markus A1 - Pauli, Jutta A1 - Brehm, Robert A1 - Resch-Genger, Ute T1 - Structural control of dye-protein binding, aggregation and hydrophilicity in a series of asymmetric cyanines JF - Dyes and pigments N2 - Aiming at the rational design and the identification of brilliant fluorescent reporters for targeted optical probes and fluorescence assays in biological matrices, we systematically assessed the correlation between dye–protein binding, dye aggregation, and dye hydrophilicity for bioanalytically relevant fluorescent labels. Here, we report on the influence of sulfonic acid groups on dye aggregation and dye–serum protein interactions exemplarily for a family of NIR-emissive cyanine dyes, the DY-67x fluorophores. For highly hydrophobic dyes like DY-675 and DY-676, which show a strong tendency for aggregation in phosphate buffer saline solution, the dye–protein binding constants determined spectroscopically using a 2-state binding model, which considers only protein-bound and unbound dye molecules, can be influenced by the dimerization of the unbound dyes. To consider and quantify this influence, we expanded this common photometric method to a 3-state model that accounts for the presence of dye aggregates in the binding studies. Our results can be exploited for the screening of fluorescent reporters, efficiently providing information on the size of dye–protein interactions and on maximally achievable fluorescence quantum yields in biological systems. KW - Cyanine dye KW - Dye–protein interaction KW - BSA KW - Binding constant KW - Hydrophilicity KW - Aggregation PY - 2014 DO - https://doi.org/10.1016/j.dyepig.2013.11.027 SN - 0143-7208 SN - 1873-3743 VL - 103 SP - 118 EP - 126 PB - Elsevier Ltd. CY - Kidlington AN - OPUS4-30054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabolle, Markus A1 - Brehm, Robert A1 - Pauli, Jutta A1 - Dees, F.M. A1 - Hilger, I. A1 - Resch-Genger, Ute T1 - Determination of the labeling density of fluorophore-biomolecule conjugates with absorption spectroscopy JF - Bioconjugate chemistry N2 - Dye–biomolecule conjugation is frequently accompanied by considerable spectral changes of the dye’s absorption spectrum that limit the use of the common photometrical method for the determination of labeling densities. Here, we describe an improvement of this method using the integral absorbance of the dye instead of its absorbance at the long wavelength maximum to determine the concentration of the biomolecule-coupled dye. This approach is illustrated for three different cyanine dyes conjugated to the antibody IgG. KW - Fluorescent dye KW - Aggregation KW - Dimerization KW - Fluorophore-labeled antibodies KW - Labeling density KW - Dye-to-protein ratio KW - Absorption PY - 2012 DO - https://doi.org/10.1021/bc2003428 SN - 1043-1802 SN - 1520-4812 VL - 23 IS - 2 SP - 287 EP - 292 CY - Washington, DC AN - OPUS4-25527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Grabolle, Markus A1 - Brehm, Robert A1 - Spieles, Monika A1 - Hamann, F.M. A1 - Wenzel, M. A1 - Hilger, I. A1 - Resch-Genger, Ute T1 - Suitable labels for molecular imaging - influence of dye structure and hydrophilicity on the spectroscopic properties of IpG conjugates JF - Bioconjugate chemistry N2 - Aiming at the design of highly brilliant NIR emissive optical probes, e.g., for in vivo near-infrared fluorescence imaging (NIRF), we studied the absorption and fluorescence properties of the asymmetric cyanines Dy678, Dy681, Dy682, and Dy676 conjugated to the model antibody IgG. The ultimate goal was here to derive general structure–property relationships for suitable NIR fluorescent labels. These Dy dyes that spectrally match Cy5 and Cy5.5, respectively, were chosen to differ in chromophore structure, i.e., in the substitution pattern of the benzopyrylium end group and in the number of sulfonic acid groups. Spectroscopic studies of the free and IgG-bound fluorophores revealed a dependence of the obtained dye-to-protein ratios on dye hydrophilicity and control of the fluorescence quantum yields (Φf) of the IgG conjugates by the interplay of different fluorescence reduction pathways like dye aggregation and fluorescence resonance energy transfer (FRET). Based upon aggregation studies with these dyes, the amount of dye dimers in the IgG conjugates was determined pointing to dye hydrophilicity as major parameter controlling aggregation. To gain further insight into the exact mechanism of dye dimerization at the protein, labeling experiments at different reaction conditions but constant dye-to-protein ratios in the reaction solution were performed. With Dy682 that displays a Φf of 0.20 in PBS and 0.10 for moderate dye-to-protein ratio of 2.5, a low aggregation tendency, and a superior reactivity in IgG labeling, we identified a promising diagnostic tool for the design of NIR fluorescent probes and protein conjugates. KW - In vivo fluorescence imaging KW - NIR fluorophore KW - Fluorescence quantum yield KW - Cyanine KW - IpG KW - Protein labelling KW - Aggregation KW - Homo-FRET PY - 2011 DO - https://doi.org/10.1021/bc1004763 SN - 1043-1802 SN - 1520-4812 VL - 22 IS - 7 SP - 1298 EP - 1308 PB - ACS Publications CY - Washington, DC AN - OPUS4-24156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -