TY - CONF A1 - Fedelich, Bernard A1 - Epishin, A. A1 - Kindrachuk, V. A1 - Link, T. A1 - Vattré, A. A1 - Künecke, Georgia T1 - Open aspects in constitutive modeling for single crystal superalloys N2 - Presentation that presents various open aspects in constitutive modelling of superalloys T2 - Workshop on Superalloy Single Crystals CY - Paris, France DA - 29.06.2016 KW - Constitutive modelling KW - Superalloys PY - 2016 AN - OPUS4-36968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Skrotzki, Birgit ED - Iacoviello, Francesco T1 - Modeling the lifetime reduction due to the superposition of TMF and HCF loadings in cast iron alloys T2 - Procedia Structural Integrity N2 - The superposition of small amplitude, high frequency loading cycles (HCF) to slow, large amplitude loading cycles (TMF) can significantly reduce the fatigue life. In this work, the combined TMF+HCF loading has been experimentally investigated for a cast iron alloy. In particular, the influence of the HCF frequency of the HCF amplitude and of the location of the superposed HCF cycles has been assessed. It was observed that the HCF frequency has a limited impact on the TMF fatigue life. On the other side, the HCF-strain amplitude has a highly non-linear influence on the TMF fatigue life. A simple estimate for the fatigue life reduction due to the superposed HCF cycles has been derived from fracture mechanics considerations. It is assumed that the number of propagation cycles up to failure can be neglected after a threshold for the HCF loading has been reached. The model contains only two adjustable parameters and can be combined with any TMF life prediction model. The model predictions are compared with the test results for a large range of TMF+HCF loading conditions. T2 - 21st European Conference on Fracture, ECF21 CY - Catania, Italy DA - 20.06.2016 KW - Thermomechanical Fatigue (TMF); High Cycle Fatigue (HCF); Cast iron; Fatigue assessment PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-369550 DO - https://doi.org/doi:10.1016/j.prostr.2016.06.274 VL - 2 SP - 2190 EP - 2197 PB - Elsevier CY - Radarweg 29, 1043 NX Amsterdam, The Netherlands, AN - OPUS4-36955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Experimental and analytical investigation of the TMF-HCF lifetime behavior of two cast iron alloys N2 - The superposition of small amplitude, high frequent loading cycles (HCF) to the slow, large amplitude, TMF loading cycles can significantly reduce the TMF life, i.e. the number of TMF blocks until failure. In this work, the combined TMF-HCF loading has been experimentally investigated for two cast iron alloys. Both alloys contain globular graphite nodules but the first one has a ferritic while the second one has an austenitic crystal structure. In particular, the influence of the HCF frequency, of the HCF loading amplitude and of the location of the superposed HCF cycles has been investigated. It was observed that the HCF frequency has a limited impact on the TMF fatigue life. In other words, the number of superposed HCF-cycles has only a slight influence on the TMF fatigue life, which contradicts the linear damage accumulation rule concept. On the other side, the HCF-strain amplitude has a highly non-linear influence on the TMF fatigue life. The experimental results can be understood in terms of a fracture mechanics based damage mechanism [1]: Cracks readily initiate due to the TMF loading and the duration of the growth of the cracks up to a few mm controls the fatigue life. If HCF-loading cycles are superposed, cyclic crack propagation dramatically accelerates at some stage. This stage is related to the existence of a threshold for crack growth under pure HCF-conditions and largely controls the fatigue life of the combined loading. The previous ideas have been expressed in a model that can be very simply applied to provide the fatigue life reduction factor due to the superposed HCF cycles. It only contains two additional adjustable parameters and can be combined with any TMF model. T2 - 3rd International Workshop on Thermo-mechanical fatigue CY - BAM, Berlin, Germany DA - 27.04.2016 KW - TMF KW - HCF KW - Cast iron KW - Fatigue life assessment PY - 2016 AN - OPUS4-35996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Grützner, Stephan A1 - Rehmer, Birgit T1 - Constitutive modeling and lifetime prediction for a conventionally cast Ni-base superalloy under TMF loading N2 - Under cyclic thermomechanical loading, various effects such as strain accumulation, creep damage, ageing, fatigue etc. may occur in the material of a gas turbine blade. Depending on the loading conditions, all these effects contribute to reduce the lifetime of the component. Subject of the present work is the development of a material model to describe the mechanical effects mentioned above and to subsequently predict lifetimes by using simulated stress strain data. Starting point for deformation modeling is the well known viscoplastic model after Chaboche, which provides descriptions of isotropic and kinematic hardening, as well as dynamic and static recovery. The evolution equation for kinematic hardening model has been modified following the proposal of Ohno/Wang to better predict stress controlled cyclic strain accumulation, i.e. ratchetting. A damage variable has been included to represent tertiary creep according to the concept of Kachanov. Finally, the static recovery has been modified following Kindrachuk to account for strain induced ageing. The models parameters have been calibrated using isothermal test data only. The constitutive model has been validated by comparing experimental with predicted TMF stress-strain hystereses. Lifetime prediction is done with the TMF lifetime model proposed by Riedel. The model assumes that fatigue life is controlled by the propagation of short cracks. Besides pure fatigue, it takes the local creep deformations at the crack tip into account. The model is applied to a broad variety of isothermal and non isothermal tests over temperatures up to 950°C and different loading conditions. The evaluation shows that throughout satisfying results can be achieved using a limited number of model parameters for the whole test data base. T2 - 3rd International Workshop on Thermo-mechanical fatigue CY - BAM, Berlin, Germany DA - 27.04.2016 KW - TMF KW - Nickel base superalloy KW - Fatigue life assessment KW - Constitutive law PY - 2016 AN - OPUS4-35994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Uckert, Danilo A1 - Matzak, Kathrin A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Peter, Frauke A1 - Fedelich, Bernard A1 - Falkenberg, Rainer A1 - Haftaoglu, Cetin A1 - Kindrachuk, Vitaliy T1 - Erweiterung bestehender Werkstoff- und Rechenmodelle zur Lebensdauervorhersage für Abgasturbolader-Heißteile unter thermomechanischer Ermüdungsbeanspruchung T2 - Abschlussbericht über das Vorhaben Nr. 1100 (IGF-Nr. 17084 N) N2 - In diesem Forschungsvorhaben erfolgte eine Überprüfung der Übertragbarkeit der Werkstoff- und Rechenmodelle für die Lebensdauervorhersage von ATL-Heißteilen unter TMF-Beanspruchung auf eine andere Werkstoffklasse, d. h. auf eine austenitische Gusseisenlegierung mit Kugelgraphit. Dafür wurde die Legierung EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S) ausgewählt. Zunächst wurde für diesen Werkstoff eine experimentelle Datenbasis geschaffen, da diese vor Beginn des Vorhabens nicht ausreichend war. Dazu wurden Zug-, Kriech-, LCF- und TMF-Versuche durchgeführt, die der Kalibrierung der Modelle dienten. Unter TMF-Belastung zeigte der untersuchte Werkstoff ein stark abweichendes Verhalten von den im vorangegangenen Vorhaben untersuchten ferritischen SiMo-Legierungen: Der Werkstoff Ni-Resist zeigte insgesamt eine vergleichbare Festigkeit unter OP- und IP-Bedingungen, während die ferritischen Legierungen unter IP-Beanspruchung eine deutlich höhere Festigkeit aufweisen. Mit zunehmenden Temperaturen und Haltezeiten unter Zugspannungen wurden dagegen beim Werkstoff Ni-Resist Hinweise auf Kriechschädigung gefunden, die schädigungsrelevant sind. Auch dies ist ein deutlicher Unterschied zu den SiMo-Legierungen. Das Spannungs-Verformungs-Verhalten in den LCF- und TMF-Versuchen wird durch das Modell auch für den neuen Werkstoff überwiegend gut beschrieben. Das Gleiche gilt für die Lebensdauervorhersage, die mit Ausnahme der Prüftemperatur 900 °C innerhalb eines Fak-tors zwei liegt. Eine Verifikation des Modells erfolgte mit Hilfe eines Bauteilversuchs an einem Abgassammler, der abwechselnd mit heißem und kaltem Gas durchströmt wurde. Ziel der Bauteilsimulation war insbesondere die Vorhersage der Rissbildungsorte. Eine Vorhersage der exakten Lebensdauer wurde nicht erwartet, da das Bauteil mit einer Gusshaut behaftet war, während die für die Kalibrierung des Lebensdauermodells verwendeten Versuche an bearbeiteten, glatten Proben ohne Gusshaut durchgeführt wurden. Die überwiegende Anzahl der experimentell ermittelten Rissorte wurden vorhergesagt. Schließlich war ein wesentliches Ziel des Vorhabens, den Einfluss von HCF-Schwingungen auf die TMF-Lebensdauer vertieft experimentell zu untersuchen und das bereits bestehende Lebensdauermodell auf HCF-Überlagerung zu erweitern. Dazu wurde zunächst die Daten-basis aus dem Vorgängervorhaben am Bespiel von SiMo 4.05 deutlich ausgebaut, um die verschiedenen Einflussparameter zu erfassen. Es wurde ein Ansatz entwickelt, in dem die Lebensdauerminderung durch die überlagerten HCF-Schwingungen abgebildet wird. Dabei wird davon ausgegangen, dass ab einer bestimmten Risstiefe die Überlagerung der HCF-Schwingungen die Rissausbreitung stark beschleunigt. Der Zeitpunkt, wann diese Beschleunigung eintritt, wird als maßgeblich für die Lebensdauerminderung angesehen. Mit diesem Ansatz lassen sich die Lebensdauern für beide Werkstoffe in guter Übereinstimmung mit dem Experiment vorhersagen. T2 - Informationstagung Turbomaschinen, Frühjahr 2016 CY - Bad Neuenahr, Germany DA - 13.04.2016 KW - Ermüdung KW - LCF KW - Modellierung KW - Schädigung KW - Simulation KW - TMF PY - 2016 VL - Heft R575 SP - 1 EP - 35 AN - OPUS4-35823 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -