TY - JOUR A1 - Farhat, Abbas A1 - Luu, Li-Hua A1 - Doghmane, Alexis A1 - Cuéllar, Pablo A1 - Benahmed, Nadia A1 - Wichtmann, Torsten A1 - Philippe, Pierre T1 - Micro and macro mechanical characterization of artificial cemented granular materials N2 - The focus of this study is the experimental characterization of cemented granular materials, with the aim of identifying the microscopic properties of the solid bonds and describing the extension to macroscopic mechanical strength of cemented samples.We chose to use artificially bonded granular materials, made of glass beads connected by solid paraffin bridges. The results of several sets of laboratory tests at different scales are presented and discussed. Micromechanical tests investigate the yield strength of single solid bonds between particles under traction, shearing, bending and torsion loading, as a function of variations in particle size, surface texture and binder content. Macro-scale tensile tests on cemented samples explore then the scale transition, including influence of confining walls through homothetic variations of the sample size. Despite the large statistical dispersion of the results, it was possible to derive and validate experimentally an analytical expression for micro tensile yield force as a function of the binder content, coordination number and grain diameter. In view of the data, an adhesive bond strength at the contact between bead and solid bond is deduced with very good accuracy and it is even reasonable to assume that the other threshold values (shear force, bending and torsion moments) are simply proportional to the tensile yield, thus providing a comprehensive 3D model of cemented bond. However, the considerable dispersion of the data at the sample scale prevents validation of the extended model for macroscopic yield stress. A final discussion examines the various factors that may explain intrinsic variability. By comparison with other more realistic systems studied in the literature in the context of bio-cementation, our artificial material nevertheless appears suitable for representing a cemented granular material. Being easy to implement, it could thus enable the calibration of discrete cohesion models for simulation of practical applications. KW - Cemented granular material KW - Micro-mechanical characterisation KW - Artificial soils KW - Yield tensile stress PY - 2024 DO - https://doi.org/10.1007/s10035-024-01426-2 SN - 1434-5021 VL - 26 IS - 3 SP - 1 EP - 20 PB - Springer CY - Berlin AN - OPUS4-63507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - 3D spatial modelling of CPT data for probabilistic preliminary assessment of potential pile tip damage upon collision with boulders N2 - Tip damage of monopiles from boulder collisions during installation has emerged as a critical design issue, primarily due to the combination of the widespread use of large-diameter piles and the complexity of the ground conditions at the available sites. Recently, a framework relating potential pile tip damage to cone tip resistance from Cone Penetration Tests (CPTs) has been proposed in the literature. Gaussian processes are powerful stochastic models that enable probabilistic spatial interpolation of soil data at any location within a site. On this basis, this study utilizes sparse CPT data from a site in the North Sea, to first develop an efficient Gaussian process regression model, which is used to derive a three-dimensional (3D) probabilistic predictive map of the cone tip resistance. Assuming deterministic loading conditions and a factual collision with a boulder of pre-defined properties, the cone tip resistance predictive model is subsequently used for a probabilistic preliminary assessment of potential pile tip damage. Results of the analysis are realistic 3D probability maps of potential damage that aim to support engineering judgment and contribute towards cost-effective site investigation planning and offshore wind farm design. T2 - 5th International Symposium on Frontiers in Offshore Geotechnics (ISFOG 2025) CY - Nantes, France DA - 09.06.2025 KW - CPT data KW - Gaussian process regression KW - Boulder impact KW - Preliminary pile tip damage assessment PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634417 SN - 978-2-85782-758-0 DO - https://doi.org/10.53243/ISFOG2025-323 SP - 505 EP - 510 PB - International Society for Soil Mechanics and Geotechnical Engineering CY - London AN - OPUS4-63441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kemmler, Samuel A1 - Cuéllar, Pablo A1 - Artinov, Antoni A1 - Luu, Li-Hua A1 - Farhat, Abbas A1 - Philippe, Pierre A1 - Rettinger, Christoph A1 - Köstler, Harald T1 - A fully-resolved micromechanical simulation of piping erosion during a suction bucket installation N2 - Granular fluidization phenomena such as piping erosion represent a challenge to the delicate installation process of offshore suction bucket foundations. A detailed analysis of the complex conditions in terms of soil composition, soil state, and foundation installation parameters that may lead to piping can be very demanding, if at all possible, solely by experimental means or using macroscopic continuum-based seabed models. The present paper presents a fully-resolved fluid-coupled micromechanical approach for a three-dimensional numerical simulation of the installation process of a suction bucket using the lattice Boltzmann method and discrete element method. The developed model is validated using well-established benchmarks and calibrated by means of experimental data from physical model tests on relevant scenarios focusing on the local fluidization of fixed embedded suction buckets as well as on the suction-driven installation of unrestrained buckets. The qualitative and quantitative agreement with the experimental data both endorse the proposed methodology and highlight the physical soundness of the obtained results. Thereby, the paper shows that three-dimensional analyses of relevant local scenarios at a real scale with little macromechanical model assumptions are feasible. KW - Micromechanical simulation KW - Fluid–solid coupling KW - Piping erosion KW - Suction bucket foundation KW - Offshore wind support structure KW - High-performance computing PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-633790 DO - https://doi.org/10.1016/j.compgeo.2025.107375 SN - 0266-352X VL - 186 SP - 1 EP - 17 PB - Elsevier B.V. AN - OPUS4-63379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kemmler, Samuel A1 - Cuéllar, Pablo A1 - Rettinger, C. A1 - Köstler, H. T1 - A Fluid-Solid Coupled Micromechanical Simulation for the Analysis of Piping Erosion During the Seabed Installation of a Suction Bucket Foundation N2 - Suction buckets are a promising concept for the foundations of offshore wind turbines. During the installation process of a suction bucket, localized fluidization of the granular soil, so-called piping erosion, may lead to installation failure. A 3D fluid-solid coupled micromechanical simulation is presented to study the occurrence of piping. An Euler-Lagrangian coupling employs momentum exchange between the fluid phase and the geometrically resolved particles. We investigate the behavior of the soil for three cases with varying prescribed suction velocities. We observe piping in the case with the highest suction velocity by analyzing the deformation of the granular fabric and monitoring the differential pressure. The grains under the bucket wall-tip show the highest hydraulic gradients and forces at the onset of piping. This approach permits a detailed analysis of piping phenomena and brings novel insights on the triggering conditions for piping failure of suction-aided foundations. T2 - TC 105 International Symposium CY - Grenoble, France DA - 23.09.2024 KW - Micromechanical simulation KW - Piping erosion KW - Suction bucket foundation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629461 DO - https://doi.org/10.1088/1755-1315/1480/1/012024 SN - 1755-1307 VL - 1480 IS - 1 SP - 1 EP - 4 PB - IOP Publishing AN - OPUS4-62946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Multivariate Gaussian Process Regression for 3D site characterization from CPT and categorical borehole data N2 - Accurate prediction of subsurface stratigraphy and geotechnical properties, along with quantification of associated uncertainties, is essential for improving the design and assessment of geotechnical structures. Several studies have utilized indirect data from Cone Penetration Tests (CPTs) and employed statistical and Machine Learning methods to quantify the geological and geotechnical uncertainty. Incorporating direct borehole data can reduce uncertainties. This study proposes a computationally efficient multivariate Gaussian Process model that utilizes site-specific data and: (i) jointly models multiple categorical (USCS labels) and continuous CPT variables, (ii) learns a non-separable covariance structure leveraging the Linear Model of Coregionalization, and (iii) predicts a USCS based stratigraphy and CPT parameters at any location within the 3D domain. The results demonstrate that integrating geotechnical and geological data into a unified model yields more reliable predictions of subsurface stratification, enabling the parallel interpretation of both USCS classification and CPT profiles. Importantly, the model demonstrates its potential to integrate multiple variables from different sources and data types, contributing to the advancement of methodologies for the joint modeling of geotechnical, geological, and geophysical data. KW - Geotechnical site-characterization KW - Cone Penetration Tests KW - Stratigraphy prediction KW - Multivariate Gaussian process KW - Variational inference KW - Linear Model of Coregionalization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629456 DO - https://doi.org/10.1016/j.enggeo.2025.108052 SN - 1872-6917 VL - 352 SP - 1 EP - 19 PB - Elsevier B.V. AN - OPUS4-62945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kemmler, Samuel A1 - Rettinger, Christoph A1 - Rüde, Ulrich A1 - Cuéllar, Pablo A1 - Köstler, Harald T1 - Efficiency and scalability of fully-resolved fluid-particle simulations on heterogeneous CPU-GPU architectures N2 - Current supercomputers often have a heterogeneous architecture using both conventional Central Processing Units (CPUs) and Graphics Processing Units (GPUs). At the same time, numerical simulation tasks frequently involve multiphysics scenarios whose components run on different hardware due to multiple reasons, e.g., architectural requirements, pragmatism, etc. This leads naturally to a software design where different simulation modules are mapped to different subsystems of the heterogeneous architecture. We present a detailed performance analysis for such a hybrid four-way coupled simulation of a fully resolved particle-laden flow. The Eulerian representation of the flow utilizes GPUs, while the Lagrangian model for the particles runs on conventional CPUs. Two characteristic model situations involving dense and dilute particle systems are used as benchmark scenarios. First, a roofline model is employed to predict the node level performance and to show that the lattice-Boltzmann-based Eulerian fluid simulation reaches very good performance on a single GPU. Furthermore, the GPU-GPU communication for a large-scale Eulerian flow simulation results in only moderate slowdowns. This is due to the efficiency of the CUDA-aware MPI communication, combined with the use of communication hiding techniques. On 1024 A100 GPUs, an overall parallel efficiency of up to 71% is achieved. While the flow simulation has good performance characteristics, the integration of the stiff Lagrangian particle system requires frequent CPU-CPU communications that can become a bottleneck, especially when simulating the dense particle system. Additionally, special attention is paid to the CPU-GPU communication overhead since this is essential for coupling the particles to the flow simulation. However, thanks to our problem-aware co-partitioning, the CPU-GPU communication overhead is found to be negligible. As a lesson learned from this development, four criteria are postulated that a hybrid implementation must meet for the efficient use of heterogeneous supercomputers. KW - Discrete element method KW - Hybrid implementation KW - High-performance computing KW - Particulate flow KW - Lattice Boltzmann method PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623958 DO - https://doi.org/10.1177/10943420241313385 SN - 1741-2846 SP - 1 EP - 19 PB - SAGE Publications AN - OPUS4-62395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balscheit, Hagen A1 - Geißler, Peter A1 - Cuéllar, Pablo A1 - Basedau, Frank A1 - Baeßler, Matthias T1 - Large-scale field tests on plastic pile tip failure upon monopile installation N2 - Large-diameter monopiles are the most common foundation structures for offshore wind turbines. One relevant failure mode during installation is plastic failure of the pile tip which may increase progressively during further driving (pile tip buckling; extrusion buckling). This paper presents the details and results of a large-scale field-test campaign with dynamic pile installation for the validation and calibration of different numerical approaches concerning pile-tip buckling phenomena. The phenomenology of observed pile-tip failures is here described in detail and a first quantitative approach is evaluated based on the field-test data. As the number of new projects continues to grow and the necessity to construct wind farms in challenging terrain increases, such field data-sets will become increasingly relevant. KW - Monopile KW - Offshore Windenergy KW - Pfahlfußbeulen KW - Pile Tip Buckling KW - Reference Tests PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-611651 DO - https://doi.org/10.1016/j.oceaneng.2024.119322 VL - 313 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-61165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farhat, Abbas A1 - Philippe, Pierre A1 - Luu, Li-Hua A1 - Doghmane, Alexis A1 - Cuéllar, Pablo T1 - Hydraulic failure of granular materials with artificial cementation N2 - This paper presents an experimental study on the hydraulic failure of a submerged layer of cemented soil stressed by a localized upward water flow. Different mixtures of glass beads bonded with solid paraffin bridges were used as artificial material for the cemented granular soil. Variations in the cementation strength of the material were carefully introduced with different particle sizes and binder contents. The hydraulic fracture tests were then carried out with an upward flow injected at a controlled rate through a small section at the bottom of the samples. From a phenomenological perspective, the results reveal the existence of at least three modes of failure for a cemented soil layer: (1) overall block uplift, (2) block rupture by median crack at the inflow zone, and (3) progressive excavation of a fluidized path along the walls. The critical flow rate and pressure drop conditions at failure have been carefully quantified for the different mixtures and layer thicknesses, leading to a fair estimation of the hydraulic resistance of the samples, which here is found to be virtually independent of the grain size. However, the test results also showed inconsistent failure modes precluding so far the derivation of a simple phase diagram. Nevertheless, it was possible to rationalize all the measured data by employing appropriate modifications of the classical dimensionless numbers that describe the fluidization of purely frictional materials, whereby the cementation strength of the soil is quantified at the microscale through the yield tensile force of the intergranular bonds. Irrespective of its subsequent development, during which boundary conditions obviously play a major role, the initiation of the instability appears to take place very locally at the inlet when the drag force induced by the flow overcomes the cementation strength of the paraffin bonds. The results of this study thus appear to endorse the extension of the dimensional relationships of particulate systems in interaction with fluid flows to the case of cemented granular materials, in a similar vein as in recent previous studies. KW - Fluidized beds KW - Granular materials KW - Fluid Dynamics KW - Cemented soil PY - 2024 DO - https://doi.org/10.1103/PhysRevFluids.9.064305 SN - 2469-990X VL - 9 IS - 6 SP - 1 EP - 13 PB - American Physical Society AN - OPUS4-60803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Spatial modeling of heterogeneous geotechnical site investigation data using multivariate Gaussian Process N2 - This presentation is part of the Engineering Risk Analysis group open seminars. It aims to showcase the results of an ongoing study centered on developing a novel probabilistic methodology for 3D geotechnical site characterization. This methodology integrates data from Cone Penetration Tests (CPTs) and categorical borehole data. The presentation covers the mathematical details of the proposed Multivariate Gaussian Process model and demonstrates its application to a real geotechnical site in New Zealand. T2 - ERA Seminars CY - Munich, Germany DA - 24.07.2024 KW - Geotechnical site-characterization KW - CPT KW - Boreholes KW - Gaussian Process PY - 2024 AN - OPUS4-60716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Multivariate Gaussian Process for 3D subsurface stratigraphy prediction from CPT and labelled borehole data N2 - Quantifying uncertainties in subsurface properties and stratigraphy can lead to better understanding of the ground conditions and enhance the design and assessment of geotechnical structures. Several studies have utilized Cone Penetration Test (CPT) data and employed Bayesian and Machine Learning methods to quantify the geological uncertainty, based on the Robertson’s soil classification charts and the Soil Behaviour Type Index (Ic). The incorporation of borehole data can reduce the stratigraphic uncertainty. Significant challenges can arise, however, mainly due to the intrinsic differences between field and laboratory-based soil classification systems, which can potentially lead to inconsistent soil classification. To this end, this study proposes a multivariate Gaussian Process model that utilizes site-specific data and: i) jointly models multiple categorical (USCS labels) and continuous (Ic) variables, ii) learns a (shared) spatial correlation structure and the betweenoutputs covariance, and iii) produces two types of dependent classification outputs. The results indicate that the integration of geotechnical and geological information into a unified model can provide more reliable predictions of the subsurface stratification, by allowing simultaneous interpretation of USCS and Ic profiles. Importantly, the model demonstrates the potential to integrate multiple variables of different types, aiming to contribute to the development of a methodology for joint modeling of geotechnical, geological and geophysical data. T2 - 7th International Conference on Geotechnical and Geophysical Site Characterization CY - Barcelona, Spain DA - 18.06.2024 KW - Geotechnical site-characterization KW - Probabilistic KW - Soil classification KW - Gaussian Process PY - 2024 SP - 1733 EP - 1740 AN - OPUS4-60712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -