TY - RPRT A1 - Rauscher, H. A1 - Mech, A. A1 - Gaillard, C. A1 - Stintz, M. A1 - Wohlleben, W. A1 - Weigel, St. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Mielke, Johannes T1 - Recommendations on a Revision of the EC Definition of Nanomaterial Based on Analytical Possibilities N2 - In October 2011 the European Commission (EC) published a "Recommendation on the definition of nanomaterial" (2011/696/EU), to promote consistency in the interpretation of the term "nanomaterial" for legislative and policy purposes in the EU. The EC NM Definition includes a commitment to its review in the light of experience and of scientific and technological developments. This review is ongoing in 2015 and as a contribution to the review the Joint Research Centre of the European Commission (JRC) has already developed a series of three scientific-technical reports with the title: “Towards a review of the EC Recommendation for a definition of the term nanomaterial” which provides to the EC policy services science-based options on how the definition could be revised or supported with additional guidance. The overarching nature and wide scope of the EC NM Definition, as it does not exclude a priori any particulate material regardless the state, form and size, creates many analytical challenges in its imple-mentation for all stakeholders, including enterprises and regulators. The NanoDefine project has as core objective to support the implementation of the EC NM Definition. In this report key aspects of the EC NM Definition are addressed, with the goal to improve the implement-ability of the EC NM Definition. These aspects are presented and discussed based on the results of two years of research performed within the framework of the project. As a result this report assesses how well the requirements of the EC NM Definition can be fulfilled with currently available analytical possi-bilities. It presents recommendations and options on a revision of the EC NM Definition to improve the implementability of the definition based on currently available analytical possibilities, according to the state of the art of mid-2015. Of the technical issues considered in this report, the following seem to deserve the most attention in terms of clarification of the definition and/or provision of additional implementation guidance:  The term ‘external dimension’. A clear definition of 'External dimension' should be included in the text of the EC NM definition and more precise guidance on what is considered as an external dimension and how to properly character-ise it should be provided.  The ‘number based particle size distribution‘. The EC NM Definition uses a threshold related to the number based size distribution of particles. Yet most of the easily available techniques provide a mass-, volume- or scattered light intensity-based size distribution which needs to be converted into a number based distribution to be used for regulatory pur-poses. A specific guidance on the conditions under which these methods can be used to identify a na-nomaterial by employing appropriate quantity or metrics conversion should be provided.  The ‘polydispersity‘ and ‘upper size limit‘ Polydispersity is a challenge for the measurement of particle size distribution for the EC NM definition, specifically for materials with high polydispersity index and broad size distribution especially when the volume or mass of the fraction containing particles below 100 nm is very small. Therefore a dedicated guidance should be provided that allows applying an upper size limit in measurements and particle statistics. KW - Nanomaterial KW - EU Definition of nanomaterial KW - Nanoparticles PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-432339 UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D7.10.pdf SP - 1 EP - 68 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-43233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Babick, F. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Weigel, St. A1 - Wohlleben, W. T1 - Critical review manuscript with real-world performance data for counting, ensemble and separating methods including in-build mathematical conversion to number distributions submitted for publication N2 - The content of the paper is the assessment of the performance of (conventional) measurement techniques (MTs)with respect to the classification of disperse materials according to the EC recommendation for a definition of nanomaterial. This performance essentially refers to the accurate assessment of the number weighted median of (the constituent) particles. All data and conclusions are based on the analytical study conducted as real-world performance testing. It comprised different types of MTs (imaging, counting, fractionating, spectroscopic and integral) as well as different types of materials. Beside reference materials with well-defined size distribution the study also included several commercial powders (variation of particle composition, morphology, coating, size range and polydispersity). In order to ensure comparability of measurement results, the participants were guided to use uniform protocols in sample preparation, conducting measurements, data analysis and in reporting results. Corresponding documents have been made public, in order to support the reviewing process of the paper, respectively to ensure the reproducibility of data by other users under the same conditions. The scientific paper relies on a comprehensive set of revised measurement data reported in uniform templates, completely describes the experimental procedures and discusses the MTs’ performance for selected materials in detail. Even more, the study is summarised and evaluated, which leads to recommendations for the use of MTs within a tiered approach of NM characterisation. In addition, the paper critically examines the factors that may affect the outcome of such a comparison among different MTs. KW - Nanomaterial KW - Measurement techniques KW - EC definition of nanomaterial KW - Nanoparticles PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389646 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D3.3.pdf SP - D3.3, 1 EP - 72 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-38964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -