TY - CONF A1 - Strangfeld, Christoph T1 - Moisture testing and mapping N2 - Presentation of the Non-destructive testing and evaluation advanced training workshop of division 8.2 regarding moisture measurements. T2 - NDT&E Advanced Training Workshop CY - Berlin, Germany DA - 21.06.2023 KW - Material moisture KW - Moisture transport KW - Building materials KW - Concrete KW - Moisture measurement techniques PY - 2023 AN - OPUS4-57799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser induced breakdown spectroscopy to investigate the chemical composition of concrete N2 - Laser-induced breakdown spectroscopy (LIBS) is a spectroscopic method for detecting the chemical composition of optically accessible surfaces. In principle, the measurement of all elements of the periodic table is possible. System calibrations allow the quantification of element concentrations. In combination with scanner systems, the two-dimensional element distribution can be determined. Even rough surfaces can be measured by online adjustment of the laser focus. To detect element ingress into the concrete, typically cores are taken, cut in half, and LIBS measurements are performed on the cross-section. The high spatial resolution as well as the simultaneous multi-element analysis enables a separate evaluation of the binder-matrix and aggregates. Therefore, the element concentrations can be determined directly related to the cement paste. LIBS measurements are applicable in the laboratory, on-site and also over a distance of several meters. Common applications include the investigation of material deterioration due to the ingress of harmful ions and their interaction in porous building materials. LIBS is able to provide precise input parameters for simulation and modelling of the remaining lifetime of a structure. Besides the identification of materials, also their composition can be determined on hardened concrete, such as the type of cement or type of aggregate. This also involves the identification of environmentally hazardous elements contained in concrete. Another possible application is the detection of the composition of material flows during dismantling. Non-contact NDT for “difficult to assess” structures as an example application through safety glass or in combination with robotics and automation are also possible. This work presents the state of the art concerning LIBS investigations on concrete by showing exemplary laboratory and on-site applications. T2 - NDE NucCon 2023 CY - Espoo, Finland DA - 25.01.2023 KW - LIBS KW - Concrete PY - 2023 AN - OPUS4-57323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Niederleithinger, Ernst T1 - Imaging of Ultrasonic Echo Measurements for Reconstruction of Technical Data of Bridges – Possibilities, Limitations and Outlook N2 - When reassessing existing concrete bridges, the challenge is often to obtain missing or incomplete information on the internal structure. In particular, the number and position of the existing reinforcement as well as the geometric dimensions of the components are of interest. Non-destructive testing methods, like radar or ultrasound, which work on the basis of the pulse-echo method, have been established for this purpose, as they only require access to the component from one side. The measurement data recorded on the structure require pre-processing to be able to reproduce the internal structure geometrically accurately. Besides different steps of data processing, the geometrical reconstruction of the measured data based on the Synthetic Aperture Focusing Technique (SAFT) is state of the art today. In this paper, the technical possibilities of the ultrasonic echo method are presented based on measurements in the laboratory and on a real bridge structure. The precision of the reconstruction and its limitations are shown. In addition to the state of the art SAFT technique, open questions and the latest research approaches, such as imaging by reverse time migration (RTM) including initial results are discussed. T2 - 13th German-Japanese Bridge Symposium CY - Osaka, Japan DA - 29.08.2023 KW - Bridge KW - Non destructive testing and evaluation KW - Concrete KW - Validation PY - 2023 AN - OPUS4-58328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Nikoonasab, Ali A1 - Licht, M. A1 - Müller, Thoralf A1 - Achenbach, R. A1 - Raupach, M. T1 - Reinforcing steel in sulfide-containing concretes – corroding or not corroding? N2 - Blast furnace cements (CEM III) and alkali-activated slags are binders for concretes with several advantageous engineering properties, and their increased adoption in construction industry could contribute to reducing the CO2 emissions associated with cement production and use. However, the current knowledge about how these cements protect steel reinforcement in concretes against corrosion is very incomplete, which impedes their large-scale application. This knowledge gap is mainly due to the fact that these cements release sulfide and other reduced sulfur species into the concrete pore solution, the consequences of which for the state of the reinforcement and electrochemical measurements are not fully understood. The present contribution first describes peculiarities of electrochemical measurements of steel in sulfide-containing cementitious materials and related solutions as reported in the literature and a recent report by EFC Working Party 11. It is demonstrated that the high sulfide concentrations in these systems lead to low open circuit potentials and low polarisation resistances, which may be incorrectly interpreted as indicating active corrosion of the steel. Second, preliminary results of an ongoing project [funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 458297195] related to the passivation and corrosion initiation of steel in sulfide-containing solutions and mortars are presented. Eight mortars based on one alkali-activated blast furnace slag (BFS), three alkali-activated BFS/fly ash blends, one sodium sulfate-activated CEM III/C (‘hybrid cement’), one CEM III/C, one CEM III/B, and one CEM I (ordinary Portland cement, OPC) were produced, and their pore solutions expressed and analysed after 7, 14, 28, and 56 days of curing. The pH values of the solutions differed systematically, with the highest pH values recorded for the CEM I and the alkali-activated BFS/fly ash blends with a high proportion of fly ash, and the lowest pH recorded for the CEM III/B. The redox potentials of the solutions were between −500 mV and −340 mV vs. Ag/AgCl for the alkali-activated binders, approx. +10 mV vs. Ag/AgCl for the CEM I, and in between for the CEM III/B and the CEM III/C. As expected, the electrical conductivity was highest for the alkali-activated binders. These results are explained by the chemical compositions of the pore solutions of the mortars. Finally, a test set-up to investigate the behaviour of steel in sulfide-containing solutions and the changes on subsequent oxygen and/or chloride addition is introduced. Preliminary electrochemical measurements of steel in sulfide-containing solutions are presented and discussed in the context of the above-mentioned data from the literature and the compositions of the pore solutions of the studied mortars. T2 - 7th Swiss Corrosion Science Day 2023 CY - Zurich, Switzerland DA - 24.04.2023 KW - Reinforcing steel KW - Sulfide KW - Concrete KW - Ground granulated blast furnace slag KW - Corrosion PY - 2023 AN - OPUS4-57386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Introduction to BAM and ultrasonics (and GPR) in civil engineering N2 - This presentation gives anoverview about BAM, its department 8 and in particular its division 8.2 "NDT methods for civil engineering". The focus is on methods and applications with a geoscientific context, such as methods adopted from geophysics or NDT method applied in a geological environment. T2 - GTK (Geological Survey of Finland) Semninar CY - Espoo, Finland DA - 20.01.2023 KW - NDT KW - Ultrasound KW - Radar KW - Geophysics KW - Concrete PY - 2023 AN - OPUS4-56911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Nuclear concrete, and how to live with it more easy using NDE N2 - This keynote presentation compiles the specialities of civil engineering compared to other disciplines, of NDT in civil engineering compared to other filds of NDT and the specific challenges of applications in the nuclear energy and disposal sector. T2 - NucCon 2023 CY - Espoo, Finland DA - 25.01.2023 KW - NDT KW - Concrete KW - Nuclear PY - 2023 AN - OPUS4-56912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - X-rays without X-rays: Can muon tomography provide pictures from within concrete objects? N2 - Until the 1980s radiography was used to inspect civil structures in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Meanwhile, non-destructive techniques such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features when applied to reinforced or prestressed concrete inspection. Muon tomography has received much attention recently. Muons are particles generated naturally by cosmic rays in the upper atmosphere and pose no risk to humans. Novel detectors and tomographic imaging algorithms have opened new fields of application, mainly in the nuclear sector, but also in spectacular cases such as the Egyptian pyramids. As a first step towards practical application in civil engineering and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results have been at least of similar quality compared to ultrasonic and radar imaging, potentially even better. Recently, the research was expanded to more realistic testing problems such as the detection of voids in certain structural elements. However, before practical implementation, more robust, mobile, and affordable detectors would be required as well as user-Friendly imaging and simulation software. T2 - ISNT NDE 2023 CY - Pune, India DA - 07.12.2023 KW - Muon tomography KW - Concrete KW - Civil engineering PY - 2023 AN - OPUS4-59347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Epple, Niklas T1 - ridge Monitoring by Ultrasonic Coda Wave Interferometry N2 - The built infrastructure ages and requires regular inspection and, when in doubt, monitoring. To ensure that older concrete bridges showing signs of deterioration can be used safely, several innovative monitoring tools have been introduced, including but not limited to optical, fiber-optic, or acoustic emission techniques. However, there are gaps in the portfolio. A sensing technique that covers a wide range of damage scenarios and larger volumes, while still being sensitive and specific, would be beneficial. For about 15 years, research has been conducted on ultrasonic monitoring of concrete structures that goes beyond the traditional ultrasonic pulse velocity test (PV test), mostly using a very sensitive data evaluation technique called coda wave interferometry. At BAM we have developed sensors and instrumentation specifically for this method. We have instrumented a 70-year-old, severely damaged prestressed concrete bridge in Germany in addition to a commercial monitoring system. We have now collected data for almost 3 years. We can show that we can provide information about the stress distribution in the bridge. We have also been able to confirm that there has been no significant additional damage to the bridge since the installation. T2 - ISNT NDE 2023 CY - Pune, India DA - 07.12.2023 KW - Coda wave interferometry KW - Structural health monitoring KW - Ultrasound KW - Concrete KW - Bridges PY - 2023 AN - OPUS4-59346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cook, Jake Thomas T1 - Assessment of concrete bioreceptivity in algal biofilm green façade systems N2 - Content: Why Algal Biofilm Green Façade Systems?, Factors Influencing Bioreceptivity, Influence of pH and Microorganism Symbiosis, Pulse-Amplitude-Modulation (PAM) Fluorometry T2 - International Conference on Bio-Based Building Materials CY - Vienna, Austria DA - 21.06.2023 KW - Concrete KW - Façade KW - Bio-receptive KW - Extracellular polymeric substances KW - Fractional factorial PY - 2023 UR - https://www.rilem.net/agenda/5th-international-conference-on-bio-based-building-materials-1501 AN - OPUS4-58962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia T1 - Curtain Walls with Biofilms for Improving the City Climate N2 - Building envelopes & natural rock surfaces represent the frontier between solid material surfaces, biosphere and the atmospheric environment – and are subject to permanent change in structure and chemistry. These surfaces are a natural habitat of subaerial rock biofilms (SAB) that are an important stage of primary succession. As their metabolic processes have a great impact on the composition of the near-surface layers of the earth biofilms on natural and manmade hard substrates are a research focus of geomicrobiology. In technical systems immobilized algae biofilms are already used successfully for wastewater cleaning. Algae can eliminate bacteria from the water and at the same time increase the oxygen concentration and the pH value in the water through photosynthesis, which again allows phosphate elimination to take place. Nitrificants contained in the algae biofilm convert ammonium to nitrite and nitrate. Mineral claddings for building facades could be engineered to sustain either natural or previously established carefully selected algae-dominated biofilms and this way help to clean the air. For a targeted engineering of the mineral substrates and the biofilms attached to them basic knowledge is however missing. By systematic research in an interdisciplinary team of microbiologists and building material scientists the following questions shall be clarified • How can a curated biofilm be stabilized on the surface and designed to be durable without compromising the substrate • What exactly do the biofilms need in terms of moisture in their respective growth stages? Or how long water must be available in what form and quantity to enable growth. • What is the influence of the substrate on the availability and quality of the (rain) water (water quality, leaching of substances (alkalis) from the building materials, leaching of aerosol components, surface tension, suction tension, thickness of the water molecule layers adsorbed in the pore spaces....) There are several research groups working on bioreceptive building materials which emphasizes the general interest in the topic. The idea of speeding-up the process by the targeted establishment of biofilms on building façade panels is a unique approach that has so far only been researched at BAM. Architects are very interested in biofilm facades as a new co-designing method of humans and nature reflecting the changing awareness for the loss of biodiversity in cities. If the biofilms need irrigation the evaporative cooling would reduce the urban heat island effect. T2 - Preparatory Workshop SPP 2451: Engineered Living Materials with Adaptive Functions CY - Saarbrücken, Germany DA - 10.07.2023 KW - Engineered living materials KW - Adaptive functions KW - Bioreceptivity KW - Biofilm KW - Concrete PY - 2023 UR - https://spp2451.de/event/preparatory-workshop/ AN - OPUS4-58965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -