TY - CONF A1 - Hahn, Marc Benjamin T1 - Direct electron irradiation of DNA in fully aqueous environment: Microscopic dose determination in combination with Monte-Carlo simulations N2 - Introduction: Ionizing radiation & DNA damage Experimental setup: Direct electron irradiation of DNA in liquid Monte-Carlo simulations: Electron scattering & diffusion Application: Radiation protection by compatible solutes T2 - Seminarvortrag im Joint Ultrafast Dynamics Laboratory in Solution and at Interfaces CY - Helmholtz-Zentrum Berlin, Germany DA - 14.06.2017 KW - DNA KW - Ectoine KW - Microdosimetry KW - Dosimetry KW - Radiation damage KW - Compatible solutes KW - Low energy electrons KW - Ionizing radiation KW - OH radical KW - Hydroxyl radicals KW - Prehydrated electrons KW - Radiation therapy KW - Cancer KW - Cancer therapy KW - Radiation protection KW - Proteins KW - Monte carlo simulations KW - Geant4 KW - Electron scattering PY - 2017 AN - OPUS4-42620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kimani, Martha Wamaitha A1 - Kislenko, Evgeniia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Design, Synthesis and Characterization of Fluorescent MIP Particles for Labelling of Malignant Cells N2 - Cancer is a leading cause of death worldwide, and its early detection and resultant treatment contributes significantly to patient recovery and survival. Detection is currently based on magnetic resonance imaging and computed tomography, methods that are expensive, while processing of the results is time-consuming1. There is a need for low-cost cancer detection techniques that give conclusive results in the shortest time possible. When equipped with a reporter function, molecularly imprinted polymers (MIPs) targeting tumor markers on cancerous cells may provide a cheaper solution for imaging-based cancer detection. Thin MIP layers immobilized on particle platforms are ideal in this regard, because a fluorescence reporter can be integrated into the particle core and/or MIP shell and such core/shell nanoparticles show faster response times and increased selectivity in comparison to bulk MIPs. Changes in sialylation patterns of cell surface glycans indicate malignancy2. Here, we present the design, synthesis and characterization of MIPs that target sialic acid-terminated glycans (SA MIPs), prepared as a thin layer on a polystyrene core/silica shell nanoparticle platform. The MIP particles contain fluorescent emitters and can be applied in fluorescence imaging of malignant tumors. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) are used for structural characterization. Binding capacity of the MIPs to target glycans and competing sugars is also evaluated and compared to that of the corresponding non-imprinted polymer particles (NIP). T2 - Mini MIP Conference CY - Online meeting DA - 16.06.2020 KW - Cancer KW - MIPs KW - Sialic acid PY - 2020 AN - OPUS4-50901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Tavernaro, Isabella A1 - Kläber, Christoph A1 - Kunst, Alexandra T1 - Design, characterization, and application of fluorescent sensor particles N2 - pH and oxygen are amongst the most important and frequently measured analytes in the life and material sciences, indicating, e.g., diseases and corrosion processes. This includes the optical monitoring of pH in living cells for studying cellular internalization pathways, such as phagocytosis, endocytosis, and receptor ligand internalization with the aid of molecular and nanoscale fluorescent sensors. Nanoparticle (NP)-based sensors, that are labeled or stained with a multitude of sensor dyes, have several advantages as compare to conventional molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by the staining and/or labelling with different fluorophores and sensor molecules or surface functionalized NP like silica (SiO2-NP) and polystyrene (PS-NP) particles provide. Here we present the design of a versatile platform of color emissive nanosensors and stimuli-responsive microparticles for the measurement of pH, oxygen, and other targets utilizing both types of matrices and sets of spectrally distinguishable sensor and reference dyes and their characterization and demonstrate the applicability of representative sensor particle for cellular studies. T2 - Vortrag bei dem Projekttreffen MicraGen CY - Copenhagen, Denmark DA - 18.08.2022 KW - Dye KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Integrating sphere spectroscopy KW - Sensor KW - pH KW - Oxygen KW - Microfluidics KW - Cancer KW - Cell KW - Life sciences PY - 2022 AN - OPUS4-57049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -