TY - CONF A1 - Tavernaro, Isabella T1 - Rational Design of Analyte-responsive Fluorescent Particle Sensors for Life Sciences Applications N2 - Engineered and tailor-made nanomaterials (NM) are of increasing relevance for current and future developments in the life and material sciences for applications, e.g., as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays, and reporters for imaging applications. For instance, NM-based reporters and sensors, that are labelled or stained with a multitude of conventional or sensor dyes, have several advantages as compared to molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte-sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. For rational NM design, choosing and tailoring the intrinsic physicochemical properties, such as particle size, size distribution, morphology, and surface chemistry of the NM application-specific considerations like biocompatibility, ease and low cost of preparation, and colloidal stability and performance in the targeted environment must be considered. In this lecture, different design concepts of inorganic, organic, and hybrid NM and microparticles with hydrophilic surface chemistries and different functionalities are presented that can be used for the targeting of lysosomes; and to monitor functional parameters of endo-lysosomal compartments, like pH or enable oxygen sensing. T2 - Chemical Probes for Lysosomal Biology CY - York, United Kingdom DA - 09.09.2024 KW - Luminescence KW - Quantification KW - Nano KW - Particle KW - Quality assurance KW - Fluorescence KW - Method KW - Uncertainty KW - Reference material KW - Sensor KW - Synthesis KW - Dye KW - pH KW - Silica KW - Polystyrene KW - Surface analysis PY - 2024 AN - OPUS4-62173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hofmann-Böllinghaus, Anja T1 - Fire safety of façades with polystyrene foam insulation N2 - Several fires involving ETIC (external thermal insulation composite) systems with polystyrene foam insulation in Germany led to an extensive discussion about fire safety of such systems. A collection initiated by the Frankfurt fire service of façade fires which include polystyrene insulation foam shows that especially fires which started in front of the buildings led to more severe fires of the façade than fires that started inside the buildings. In several fires the ignition source were burning waste containers. Three large scale tests which were initiated by German building ministries showed weaknesses of the existing systems when challenged by a bigger fire source in front of the façade. Since then measures have been introduced to enhance these systems and an additional test with a 200 kg wood crib in front of a large test rig has been used for approval of ETICS. However, the recently introduced German draft standard DIN E 4102-20 does not take these changes into account although real cases and the large scale tests showed that fire scenarios with a bigger ignition source as a waste container are not covered by the DIN E 4102-20. Numerical investigations show that regarding the heat flux to the area above the opening (e.g. a window) also only a fraction of real fires is covered. Additionally damaged systems have been investigated using the Single Burning Item (SBI) test with higher heat release rates of the burner. The damage significantly influenced the fire development of the specimen. Collapse of a damaged coating of an ETIC system occurred during the test and had a sudden fire growth as a result as the whole specimen was suddenly on fire. Several effects which could be seen in the intermediate scale tests correspond to observations which were made in the real cases. In Germany insulation of existing buildings is often enhanced with application of ETICS. In most cases the buildings are in use at the time when the construction takes place. At several stages of the construction process large amounts of unprotected polystyrene are stored in immediate proximity of the building and unprotected polystyrene can be in place on the façade for several weeks. As a consequence of the investigations challenges and possible measures to enhance fire safety of ETIC systems are discussed. T2 - Interflam Konferenz 2016 CY - Royal Holloway College, London, UK DA - 4.7.2016 KW - ETICS KW - Polystyrene KW - Insulation KW - Fire safety PY - 2016 AN - OPUS4-37011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -