TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Evaluation of Heat Fluxes in Fire Reference Test Conducted in BAM Propane Gas Fire Test Facility N2 - Packages for the transport of intermediate- and high-level radioactive waste are designed to withstand severe accidents. The International Atomic Energy Agency (IAEA) has established specific mechanical and thermal tests. Packages for the transport of radioactive material must withstand these tests to comply with the Regulations for the Safe Transport of Radioactive Materials IAEA [IAEA (2018)]. A fire reference package was developed with the primary objective to demonstrate that the fire meets the regulatory requirements. Another aim is to characterise the boundary conditions of the actual fire as input parameters for thermo-mechanical simulations. A simple method to characterise the boundary conditions of a real steady state fire with a fire reference package is presented. The thermal test mainly consists of a 30 minute fully engulfing 800°C pool fire or an equally severe fire, such as a propane gas fire. The fire reference tests are performed prior to the actual fire test with the real package. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. To investigate local and overall heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for repeated use. The fire reference package presented in this paper represents the outer geometry of a small transport container for radioactive material and is used as a device in civil engineering. It is designed as a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 182 mm and a diameter of 102 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Open-air fire tests were performed in a BAM propane gas fire test facility with the fire reference package. The measured temperatures are used to determine the changes of heat fluxes into the fire reference package in relation to the package surface temperature. The calculated heat fluxes allow its fitting to express the thermal exposure as simple mathematical boundary condition. Therefore, in a first approach, fire properties such as adiabatic surface temperature (AST) as proposed by Wickström et al. (2007), convection coefficient and emissivity are determined mathematically fitting the heat flux development presented in this paper. The evaluated results provide an initial picture of local fire characteristics of the conducted propane gas fire and are a further development of previous works from Feldkamp et al. (2020). The results can be used in thermal and thermo-mechanical models to simulate the load on the real transport package in fire. The test shows that the examined propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - SMiRT 27 (27th conference on Structural Mechanics in Reactor Technology) CY - Yokohama, Japan DA - 03.03.2024 KW - Fire KW - Propane KW - Heat Flux KW - Fire Reference PY - 2024 SP - 1 EP - 10 PB - IASMiRT AN - OPUS4-59679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Welding Seam Safety Evaluation in a Thick-Walled Type B Transport Package N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6 [1], BS 7910 [2] and API 579-1/ASME FFS1 [3]. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the abovementioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes DA - 11.06.2023 KW - Welding KW - Transport Package KW - Fracture Mechanics PY - 2023 SP - 1 EP - 11 AN - OPUS4-59421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Scheidemann, Robert T1 - Test Facilities for Radioactive Materials Transport and Storage Packagings at BAM N2 - BAM acts as authority and for service in safety assessment of packages for transport and storage of radioactive materials. We offer extensive test capabilities and application of analytical methods for design verification and simulation for all types of packages for the transport and storage of radioactive materials according with the international IAEA Regulations for the safe transport and for national storage acceptance criteria. BAM operates several test facilities for drop and stacking testing, leak testing and thermal testing. The large drop test tower allows dropping full-scale specimens up to 200,000 kg in any drop orientation as requested. The comprehensive test facilities combined with long-term experience, newest equipment and measurement devices according to the latest state-of-the-art technology ensures realisation of complex test campaigns for package safety evaluation. Beyond that, non-destructive and destructive material test devices and experts are available. Equipment and application of all kinds of typical measurement categories can be offered for testing campaigns. In recent years we performed testing of full-scale type B package models with complex handling and preparation procedures. The results were contributed for different package design approval procedures. Type A packages mainly designed for medical related transport purposes, were continuously tested according to the transport regulations over recent years as well. Moreover, we work on research topics with relevance to package safety. The mechanical behaviour of lid closure systems under transport and storage conditions and the thermal behaviour of impact limiters were recently of special importance for the assessment competencies of BAM and were investigated under use of our test facilities. The paper describes the test facilities and capabilities for package design safety evaluation at BAM and shows examples from our recent work. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - IAEA KW - Fire test KW - Drop testing KW - Transport KW - Package PY - 2023 SP - 1 EP - 12 AN - OPUS4-57967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank T1 - Ageing aspect in design approval of special form radioactive material N2 - In accordance with the IAEA transport regulations, the design of special form radioactive material (SFRM) shall resist a severe transport accident without undue loss or dispersal of radioactive material. The safety assessment for design approval includes besides the program for physical tests (impact, percussion, bending and heat test) also the evaluation of the management system for design, manufacture, testing, documentation, use, maintenance, and inspection. SFRM source design plus management system shall ensure, that every specimen of the approved design is able to survive the severe mechanical and thermal tests at any time of its SFRM-working life. Due to the long-term use of SFRM designs in most cases, the assessment of the source ageing behavior is an important aspect in the approval procedure. Different fields of application imply a wide range of environmental conditions, from clean room atmosphere to highly aggressive industrial conditions. Besides of radioactive content, corrosion is a main factor for possible SFRM design degradation. Although the IAEA Advisory Material SSG-26 already implies an indication of the need for considering ageing mechanisms, suitable amendments in the regulatory requirements of SSR-6 should be introduced to make the approval procedure more transparent and help to reduce rounds of questions by the authority. A supplementary requirement for considering of ageing mechanisms could be a helpful contribution to an international harmonization of the approval procedure. This paper will describe major influencing factors to be considered to assess the ageing behavior of a SFRM design and will identify the need for a regulatory specification of a SFRM-working life as basis for the assessment of the SFRM design regarding time-dependent weakening. A proposal for an explicit requirement for consideration of ageing mechanisms in safety assessment of SFRM, which should be considered in the ongoing SSR-6 revision cycle, will be explained. T2 - PATRAM22 Conference CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Ttransport KW - Radioactive material KW - Sealed sources KW - Ageing PY - 2023 SP - 1 EP - 6 AN - OPUS4-57786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Reichardt, Adrian A1 - Müller, Lars A1 - Neumann, Martin A1 - Komann, Steffen A1 - Wille, Frank T1 - Introduction of the German ageing management guide for packages for transport of radioactive materials N2 - The consideration of ageing mechanisms is with integration of the new para 613A into IAEA SSR-6 (Rev. 1) now obligatory for the design of transport packages. In addition, para 809(f) requires for packages intended to be used for shipment after storage the consideration of the effects of ageing mechanisms during storage in safety analyses and the implementation of corresponding instructions for operation and maintenance. Para 503(e) requires that all packaging components and radioactive contents have been maintained during storage in a manner that all requirements specified in IAEA SSR-6 (Rev.1) and in the applicable certificates of approval have been fulfilled. The evaluation of ageing mechanisms and their effects including monitoring are part of BAM’s authority assessment tasks related to the mechanical and thermal package design and quality assurance aspects. BAM has compiled a guideline for the implementation of ageing assessment and of the measures for ageing management of the approval procedure based on requirements of IAEA SSR-6 (Rev.1). The guideline is applicable only for packages requiring a competent authority approval. The paper aims to describe the structure of the guideline and the general approach for ageing management requirements. The type and amount of measures for ageing management depend mainly on the use of the package and on the ageing effects for the component, which result from relevant ageing mechanisms during package operation time. The implementation of measures for ageing management is divided into three levels – systemic measures, package design related measures and documentation. The systemic measures are attributed to the general management system and define the whole activities for organization of ageing management like structure, responsibilities, documentation, reports and evaluation. The package design related measures are defined in an ageing management plan (AMP). These measures shall ensure that the anticipated changes of the package design under consideration of ageing effects still complies with the design approval specification. Therefore, an ageing surveillance program (ASP) and, if necessary, a gap analysis program shall be developed. The ageing management documentation (AMD) ensures the continuous documentation of the compliance of a specific package to the approved package design, comprising mainly records resulting from operation and surveillance. T2 - PATRAM22 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Guide KW - Ageing KW - Mechanism KW - Package KW - Management PY - 2023 SP - 1 EP - 10 PB - World Nuclear Transport Institute (WNTI) CY - London AN - OPUS4-57770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Linnemann, Konrad A1 - Wille, Frank A1 - Reiche, Ingo A1 - Ramsay, J. T1 - New SCO-iii regulations to ship large comonents as surface contaminated objects N2 - The decommissioning or refurbishment of nuclear facilities necessitates either the storage or disposal of large radioactive components such as steam generators, pressurizers, reactor pressure vessels and heads, and coolant pumps, to list the major contributors. These components or objects are large in size and mass, measuring up to approximately 6 meters in diameter, up to 20 meters in length, and weighing over 400 000 kg. In many situations, the components are transported off-site to a storage, disposal or recycling/treatment facility. Previously, many large objects had to be transported under special arrangement. T2 - PATRAM22 CY - Juan les Pins, France DA - 11.06.2023 KW - Gefahrgut KW - Radioaktive Stoffe KW - Rückbau kerntechnischer Anlagen KW - Transport PY - 2023 SP - 1 EP - 8 AN - OPUS4-57750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad T1 - Full-scale drop testing with a heavy-weight package for radioactive waste N2 - Packages for the transport of radioactive materials shall fulfil the requirements of the IAEA regulations for the safe transport. The requirements define mechanical and thermal test conditions including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Different methods can be used for safety demonstration showing compliance with the regulations. The central part of a safety demonstration which is presented in this paper was a comprehensive drop test program with a full-scale model of a transport package accompanied by pre- and post-test FE analyses. Using full-scale drop test models allow the benefit that similarity and scaling issues become a significant smaller issue, additional material investigations can be limited and analyses for transferring test results to the original package design are reduced. Additionally, experience for the future serial packaging manufacturing and handling procedures can be collected in a very early state of the design approval process. The pre-test finite element analyses derived and justified the drop test program consisting of several drop sequences with different drop orientations of the specimen. The performance and the results of the drop test sequences shows the manageability and the advantage e.g., in view of the direct availability of test results for the package licensing. On the other hand, the drop test performance shows the difficulties during handling and the need for additional equipment during preparation of the specimen. The package presented was intended for the transport and storage of compacted radioactive waste from reprocessing of spent nuclear fuel assemblies - designed and applied for approval by the AGC consortium. The project ended in 2021. The package design was characterized by a cask body made of a forged thick stainless-steel shell, a bolted double lid system with metallic gaskets and wood filled shock absorbers at both ends. The total mass of the entire transport package including content was 120,000 kg, the total length was about 7000 mm and the diameter approximately 3000 mm, both measures include the shock absorbers. The paper provides an insight into the performance of a full-scale drop testing campaign within the package safety evaluation and shows some selected test results. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Full-scale KW - Drop testing KW - Package KW - Radioactive materials transport PY - 2023 SP - 1 EP - 10 AN - OPUS4-57732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - R&D Activities by BAM Related to Transport Package Fire Testing N2 - Packages for the transport of radioactive material shall meet the mechanical and thermal test requirements of the International Atomic Energy Agency (IAEA) regulations for package design approval. Besides mechanical testing, the Federal Institute for Materials Research and Testing (BAM) performs thermal tests in accordance with the IAEA regulations. The thermal test includes a 30-minute 800°C fully engulfing fire. BAM continuously performs various thermal experiments for the investigation of the thermal response of packages with respect to the IAEA fire. The purpose of this paper is to give an overview of the already performed, ongoing and future physical tests and experiments of BAM in the field of thermal investigations. These research and development works shall support our competencies for the authority package design assessment. BAM operates a propane gas fire test facility. To be able to carry out comparative investigations and validity between the propane fire and the in detail prescribed pool fire test in the regulations, BAM carries out various calorimetric tests and investigates the boundary conditions of the fire with the help of fire reference packages. At the same time, we are conducting various fire scenarios with wood-filled impact limiters. Large-scale fire tests of impact limiters are carried out on a full scale as well as on a small scale. Influencing variables are investigated in particular by means of geometric changes and the consideration of artificial damages, in particular holes. In addition to propane fire as a heat source, thermal scenarios are also investigated with hydrogen as heat source and an infrared radiator system to ignite test specimens. For these numerous test arrangements, the transferability to existing and newly developed transport package designs is essential and fruitful within the review of design approvals, especially for Dual Purpose casks with a long-lasting operation time. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Fire KW - Testing KW - Hydrogen KW - Wood KW - Propane KW - Heat Flux KW - Fire Reference Package KW - Radioactive Material PY - 2023 SP - 1 EP - 10 AN - OPUS4-57721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Gröke, Carsten A1 - Neumeyer, Tino T1 - Design assessment, approval of management systems and ageing aspects of transport packages for radioactive material not requiring competent authority approval of design N2 - Most transports of radioactive materials are carried out with packages not requiring competent authority approval of design. These encompass – in accordance with the IAEA SSR-6 regulations – packages of the classification excepted, Industrial packages Type 1, 2 and 3 and Type A packages. Currently an upsurge in number and variation of these package designs can be seen in Germany, resulting from the phase out of nuclear energy in Germany as well as e. g. increased use of radioactive material for medical purposes. A design assessment regarding the package safety is required in the international IAEA SSR-6 regulations. BAM operates facilities for the performance of all regulatory tests required such as drop towers for a wide range of package masses and dimensions, fire test, leak tightness measurements and pressure test facilities. Experiences with several package types are shown. Additionally, IAEA SSR-6 requires the establishment of a management system for design, manufacture, maintenance, and repair of the packaging as well as for the preparation, consigning, loading, carriage, unloading and receipt of the package. Relevant for Germany, BAM has published guidance material on the process of management system acceptance in the technical guide BAM-GGR 016. The requirements encompass quality management plans for the manufacturing of packages including independent manufacturing surveillance and specific instructions for operation, maintenance, and repair of packagings. Examples for management system specifics and requirements are given. Since the latest edition of the IAEA SSR-6 regulations an ageing evaluation including systematic ageing management measures are required for all kind of package types. BAM is going to update the guidance material BAM-GGR 016 to support the stakeholders with relevant information to fulfil the ageing aspect for packages not requiring competent authority approval. The paper explains how the ageing aspect may be included in the safety evaluation process and the management system measures and will give an outlook for the future guidance material. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Typ KW - Radioactive material KW - Non-approved PY - 2023 SP - 1 EP - 8 AN - OPUS4-57703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6, BS 7910 and API 579-1/ASME FFS1. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the above-mentioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Transport Package KW - Welding KW - Fracture Mechanics PY - 2023 SP - 1 EP - 10 AN - OPUS4-57696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -