TY - CONF A1 - Gleim, Tobias A1 - Monavari, Mehran A1 - Bertovic, Marija A1 - Wille, Frank T1 - AI-driven Documentation Analysis for Safety Assessment of Packages with Hazardous Goods N2 - Transport packages for radioactive material require, dependent on type und quantity of the radioactive material, a regulatory approval. Safety assessments shall be conducted in compliance with the IAEA regulations and documented in a comprehensive package design safety report to obtain approval from authority. This comprehensive safety report evaluates a broad range of requirements from the regulations, including physical specifications, control measures, and testing assessments. Additionally, it encompasses supporting documents such as specifications, plans in a variety of complex documents. Safety and manufacturing reports contain multiple interconnected sub-reports covering various topics. Changes, such as component modifications, material property updates, standards, or regulatory revisions, often impact multiple sections of the safety analysis reports, making even minor adjustments complex and time-consuming. Each transport package has unique constraints, making every safety report distinct, despite following the same regulatory framework. This project aims to enhance data analysis and processing through AI-based approaches [4]. Automated methods for analysing and interlinking documentation will improve efficiency, accuracy, and consistency while reducing human error in safety assessments. A key challenge is that pre-trained Large Language Models (LLMs) lack domain-specific data on packaging safety, potentially leading to inaccurate results. To mitigate this, the project applies Retrieval-Augmented Generation (RAG) in conjunction with LLMs. This approach integrates the strengths of pre-trained models with expert knowledge from databases and document repositories, ensuring accurate, well-founded, and transparent assessments. Beyond technical challenges, human factors must be considered early. New technologies often trigger resistance, if not introduced properly. Furthermore, long-term AI-reliance may lead to loss of expertise needed to solve complex problems. User-centred approach ensures effective implementation and lasting viability. This study evaluates the feasibility of using LLMs [2] and RAG [1, 3] for regulatory compliance in radioactive material transport. By analysing current documentation workflows, we assess how AI-driven tools can interpret complex safety reports and identify critical dependencies. Furthermore, we highlight the necessity of robust data governance, confidentiality measures, and AI reliability in this highly regulated domain. T2 - KONTEC 2025 CY - Dresden, Germany DA - 17.09.2025 KW - AI-driven KW - QI-Digital KW - Retrieval-Augmented Generation KW - Large Language Model PY - 2025 SP - 1 EP - 9 PB - Kontec Gesellschaft für technische Kommunikation GmbH CY - Dresden AN - OPUS4-64154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Scheidemann, Robert A1 - Neumeyer, Tino A1 - Neumann, Martin A1 - Komann, Steffen A1 - Wille, Frank T1 - Thightness Assessment of welded Lids for Encapsulations of damaged Spent Nuclear Fuel in the Design Approval Process of Dual-Purpose Casks (DPC) N2 - The disposal of spent nuclear fuel in Germany is ensured using dual-purpose casks (DPC) for transport and interim storage. The leak tightness of the DPC and resulting containment is one of the most important aspects. Additional encapsulations are required for damaged spent nuclear fuel (DSNF) to guarantee safe handling and a separate tight closure. Due to the general design of DPCs for standard fuel assemblies should special requirements be considered for the design of the encapsulations for DSNF to ensure the loading in existing package designs. The absence of a replaceable sealing in the tightness barrier is the main difference for the encapsulations for damaged spent nuclear fuel. Instead, they are welded shut with a lid. The leak tightness of the encapsulation shall be proven in the design approval process for all transport conditions. This is especially valid for accident conditions of transport, where high internal impact forces may occur. BAM as German competent authority is responsible for the safety assessment of mechanical and thermal design, retention of radioactive material and quality assurance aspects of manufacturing and operation. BAM carried out a comprehensive safety assessment concerning the mechanical package design. As there are no representative standards for verifying the leak tightness of a welded lid, two approaches were being pursued. Established German standards may be used for verifying the leak tightness of a weld - but limited to low stresses. Therefore, physical tests were required for higher impact loads. Representative drop tests and highly sensitive leakage tests were performed. The paper presents an overview of the containment assessment by BAM and points out the main findings for the design of welds regarding leak tightness. Both verification procedures are described, on one hand with German standards for lower loads and on the other hand with physical tests for higher impact loads. The leak tightness of the encapsulation weld could be approved based on leakage tests and a corresponding evaluation for all transport conditions. T2 - PATRAM 2025 CY - San Antonio, Texas, USA DA - 27.07.2025 KW - Transport packages KW - Tightness assessment KW - Welded lids KW - Encapsulations PY - 2025 VL - 2025 SP - 1 EP - 11 PB - Institute of Nuclear Materials Management (INMM) CY - Indianapolis AN - OPUS4-64023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Neumann, Martin A1 - Reichardt, Adrian A1 - Komann, Steffen A1 - Wille, Frank T1 - Experiences with the implementation of ageing management for packages for transport of radioactive materials in Germany N2 - The consideration of ageing mechanisms is now obligatory for the design of transport packages with integration of the para 613A into IAEA SSR-6 (Rev. 1). In addition, para 809(f) of SSR-6 (Rev. 1) requires for packages intended to be used for shipment after storage the consideration of the effects of ageing mechanisms during storage in safety analyses and the implementation of corresponding instructions for operation and maintenance. Para 503(e) requires that these packages have been maintained during storage in a manner that all requirements specified in SSR-6 (Rev.1) and in the applicable certificates of approval have been fulfilled. The evaluation of ageing mechanisms and their effects including monitoring are part of BAM’s authority assessment tasks related to the mechanical and thermal package design and quality assurance aspects. BAM has compiled the guideline BAM-GGR 023 for the implementation of ageing assessment and related measures into the approval procedure. The implementation of ageing management measures is obligatory in case of extension/renewal of package design approval certificates. BAM has evaluated package designs which are used only for transport as well as package designs for long term interim storage. The assessment of ageing mechanisms associated with the identification of ageing effects on components is the main part of the ageing management plan (AMP). Different approaches regarding AMP structure are introduced. Experiences and approaches about the evaluation of components for the expected package operating time are shown. We are focusing the evaluations of proofs for not accessible and not replaceable components. Operational experiences for these package designs are available and should be considered in the ageing evaluation. Corresponding measures for package monitoring are to be derived based on these results. The measures for monitoring shall be fixed in the Ageing Surveillance Program (ASP) to maintain a specification conform package for the transport on public routes. We show exemplary how results from ageing evaluation during the approval procedure are transferred into the ASP. T2 - PATRAM 2025 CY - San Antonio, Texas , US DA - 27.07.2025 KW - RAM KW - Ageing management KW - Radioactive material KW - Transport PY - 2025 SP - 1 EP - 8 PB - INMM CY - Washington D.C. AN - OPUS4-63987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Feldkamp, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Conclusions from the first return campaign of vitrified High-Level Waste on sea going vessels from the competent authority N2 - Germany has to take back vitrified waste from the reprocessing plants in France and Great Britain. The waste resulted from decades of transporting spent fuel for reprocessing to La Hague and Sellafield. The return campaign from France was concluded in 2024 with the transport of five CASTOR® HAW28M casks to the interim storage facility in Philippsburg in southern Germany. The return of waste from Sellafield comprises three campaigns and a total of 20 CASTOR® HAW28M casks. The first campaign was performed in 2020, consisting of six CASTOR® HAW28M casks, while the second campaign was performed in March 2025, consisting of seven CASTOR® HAW28M casks. The casks were transported by rail from Sellafield to the port in Barrow-in-Furness, where they were loaded into a dedicated seagoing vessel, certified as INF Class 3 according to the INF Code. This was the first time that vitrified high level waste with considerable heat load was transported under a German design approval certificate. The third campaign is expected to be performed during 2026. BAM as part of the German competent authority system was among others involved in the assessment of the sea transport. BAM required for the first transport, among others, an assessment of temperature distribution during transport, logging of temperatures of cargo bays and graphical imaging of temperatures of the bay with the cask to ensure compliance with temperature specifications, e.g. maximal neutron absorber and gasket temperatures. Special interest was taken in the identification of possible events exceeding the specified temperatures considering the different philosophies of the IMDG code and its supplement the INF code regarding temperature control of hatches. Results show compliance with assumed conditions. T2 - PATRAM 2025 CY - San Antonio, Texas, USA DA - 27.07.2025 KW - RAM KW - Transport KW - Radioactive material KW - Sea PY - 2025 SP - 1 EP - 8 PB - INMM CY - Washington D.C. AN - OPUS4-63984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Wille, Frank A1 - Komann, Steffen A1 - Neumann, Martin T1 - Qualification Procedure for Seal Designs for Spent Fuel Transport and Storage Cask Containments N2 - The seal is a key component of the containment and closure system of transport and storage casks for radioactive material. It is a major contributor to ensuring compliance with the acceptable limits for activity release according to IAEA regulations. The requirements for a safe seal performance are high, accordingly. Every new seal design intended for use in the containment of a transport cask for radioactive material passes a qualification process in Germany. The qualification process is supervised by BAM as German competent authority for mechanical, thermal and containment assessment of packages requiring design approval. The closure system including the seal shall be able to withstand the corrosive, mechanical and thermal loads associated with routine, normal and accident conditions of transport according to the IAEA regulations without losing the required sealing function. Metal seals of the Helicoflex® type are often used to ensure required package leak tightness for both storage and transport, including transport after long term interim storage. The poster will provide an overview of requirements during a seal qualification process on the example of a Helicoflex® type metal seal. T2 - 21st International Symposium on the Packaging and Transportation of Radioactive Materials, PATRAM 2025 CY - San Antonio, Texas , US DA - 27.07.2025 KW - Spent fuel transport KW - Seals KW - Radioactive KW - Containment PY - 2025 SP - 1 EP - 5 AN - OPUS4-63911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Evaluation of Convective Heat Transfer Coefficients with CFD for Heat Flux Calculation in Combustion Chamber N2 - Packages for the transport of high-level radioactive waste are designed to withstand severe accidents. To obtain approval for transport, these packages must adhere to the specification-based criteria of regulations established by the International Atomic Energy Agency (IAEA). To ensure compliance with the regulations, mechanical and thermal tests need to be conducted regarding the package type. The requirements define mechanical tests followed by a thermal test, including criteria ensuring the package design’s ability to withstand severe accidents. Heavy-weight packages for the safe transport of radioactive materials are equipped with impact limiters, which are often built with porous materials such as densely packed wood reinforced by steel sheet structures. These components absorb the kinetic energy during the impact of the package in drop tests and thus dampen the acceleration of other package components which supports the package to meet the requirements of the IAEA regulations. Following the mechanical tests, the package must, with its predamaged impact limiters, endure a thermal test defined precisely in the IAEA regulations. The thermal test is defined as a 30-min, fully engulfing 800 °C fire and a following time under ambient conditions for a sufficient period to ensure that temperatures in the specimen decrease in all parts of the specimen. During and following the thermal test, the specimen shall not be artificially cooled, and any combustion of materials of the specimen shall be permitted to proceed naturally. A wood-filled impact limiter can continue to release thermal energy during an ongoing combustion process, thus defining relevant package temperatures. Heat flux from a potentially burning impact limiter to the package is important for the safety evaluation of transport packages. A test setup was developed to approach the energy flow investigation and examine the combustion behaviour of porous materials encapsulated in predamaged cylindrical metal enclosures under various conditions. The setup consists of a combustion chamber for thermal tests under adjustable and defined boundary conditions. The temperature development of the test specimens can be observed from outside using a thermographic imager with high-definition cameras, and the mass loss of the test specimen can be measured in the combustion chamber. Convective heat transfer coefficients for various boundary conditions must be defined for use with experimentally gathered test specimen surface temperature data for heat flux evaluations. The airflow conditions in the combustion chamber were analysed using computational fluid dynamics (CFD) calculations in OpenFOAM with respect to the convective heat transfer coefficients at the surface of a hot test specimen. A convergence study was performed, and sensitivity analyses for different test specimen surface temperatures and exhaust gas volume flows were conducted. T2 - ASME PVP2025, Pressure Vessels & Piping Conference CY - Montreal, Quebec, Canada DA - 20.07.2025 KW - Heat Transfer KW - Convection KW - OpenFOAM KW - Combustion PY - 2025 SP - 1 EP - 7 PB - American society of mechanical engineers (ASME) AN - OPUS4-63901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Musolff, Andre A1 - Werner, Jan A1 - Wille, Frank T1 - A fire test stand for thermal testing of extra-large packages N2 - Packages for the transport of high-level radioactive materials are designed to withstand severe accidents. These packages must adhere to the specification-based criteria of the International Transport Regulations of the International Atomic Energy Agency (IAEA). To ensure compliance with these requirements, specific mechanical and thermal tests need to be addressed with respect to the package type. Typically, the Regulations prescribe mechanical tests followed by a thermal test as part of a cumulative test scenario. The thermal test is specified by the exposure of a test specimen for a period of 30 minutes to a thermal invironment that provides a heat flux equivalent to that of a hydrocarbon fuel-air fire with an average fire temperature of at least 800 °C fully flame engulfing the test specimen. The Federal Institute for Materials Research and Testing (BAM) operates various test facilities for this purpose at their test site (TTS) near Berlin in Germany. Thermal tests for large packages are carried out in an established fire test stand that can be adapted by the test-setup to the geometric boundary conditions of a test specimen. This fire test stand is built for test specimens with masses up to 200,000 kg and geometric dimensions relating to large transport packages including their impact limiters. The test specimen is usually placed on a water-cooled support frame in the middle of the test-stand. The fire is realized by burning propane gas which is released in liquid state from an array of gas nozzles arranged in the form of a burner ring surrounding the test specimen. For particularly extra-large test specimens, two burner rings are used on top of each other and at different heights in order to firstly achieve full fire engulfment with a significantly larger volume of fire and secondly to achieve the required heat output. In advance of a regular thermal test BAM usually performs so-called fire reference tests to determine the test conditions for compliance with the IAEA requirements. These tests are performed using a generic package which corresponds to the external geometric dimensions of the test specimen used later in the approval test. Then, this reference package is exposed to a fire under defined test parameters whereas the corresponding heat input determined from the temperature changes measured is regarded as main criterion for proofing compliance with the IAEA criteria.The paper shows the experimental proof of the suitability of BAM’s fire test stand for thermal testing of extra-large packages. The heat input and fire temperatures fully meet the IAEA criteria but can also be set significantly higher for e.g. extra-regulatory testing. T2 - ASME PVP 2025 CY - Montreal, Quebec, Kanada DA - 20.07.2025 KW - Test stand KW - Thermal testing KW - Package KW - Fire PY - 2025 SP - 1 EP - 6 AN - OPUS4-63892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Müller, Lars A1 - Neumann, Martin A1 - Wille, Frank T1 - Shipment of SCO-II – Authority assessment of mechanical aspects and quality management N2 - The decommissioning of nuclear facilities necessitates either the storage or disposal of large radioactive components such as steam generators, pressurizers, reactor pressure vessels and heads, or coolant pumps. These components or objects are large in size and mass with up to 6 meters in diameter and 20 meters in length and a weight of up to 400 tons. They are often transported to a storage, disposal, or recycling facility. Large components from nuclear facilities may often not be packed and need to be transported unpackaged due to size and weight. T2 - PATRAM 2025 CY - San Antonio, TX, USA DA - 27.07.2025 KW - radioaktive Stoffe, Rückbau kerntechnischer Anlagen, Transport, Gefahrgut PY - 2025 SP - 1 EP - 10 AN - OPUS4-63878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Musolff, André A1 - Werner, Jan A1 - Wille, Frank T1 - Fire Test Stand for Thermal Testing of Large Packages for the Transport of Radioactive Materials N2 - Packages for the transport of high level radioactive materials are designed to withstand severe accidents. These packages must comply with the specific safety requirements SSR 6 [ of the International Atomic Energy Agency (IAEA). To guarantee compliance with these requirements, specific mechanical and thermal tests need to be addressed r egard ing the package type. Typically, the r egulations prescribe mechanical tests followed by a thermal test as part of a cumulative test scenario. The thermal test is specified by the exposure of a test specimen for a period of 30 minutes to a thermal environment that provides a heat flux equivalent to that of a hydrocarbon fuel air fire with an av erage fire temperature of at least 800 °C fully flame engulfing the test specimen. The Federal Institute for Materials Research and Testing (BAM) operates various test facilities for this purpose at their Test Site for Technical Safety (near Berlin in Germany). Thermal tests for large packages are conducted in an established fire test stand that may be adapted by the test setup to the geometric boundary conditions of a test specimen. This fire test stand is built for test specimens with masses up to 200,000 kg an d geometric dimensions relating to large transport packages including their impact limiters. The test specimen is usually placed on a water cooled support frame in the middle of the test stand. The fire is realized by burning propane gas which is released in liquid state from an array of gas nozzles arranged in the form of a burner ring surrounding the test specimen. For particularly extra large test specimens, two burner rings are used on top of each other and at different heights to firstly achieve full f ire engulfment with a significantly larger volume of fire and secondly to achieve the required heat output , cf. In advance of a regular thermal test BAM usually performs so called fire reference tests to determine the test conditions for compliance with the IAEA requirements. These tests are performed using a generic package which corresponds to the external geometr ic dimensions of the test specimen used later in the approval test. Then, this reference package is exposed to a fire under defined test parameters whereas the corresponding heat input determined from the temperature changes measured is regarded as main cr iterion for proofing compliance with the IAEA criteria. The paper shows the experimental proof of the suitability of BAM’s fire test stand for thermal testing of extra large packages. The heat input and fire temperatures fully meet the IAEA criteria and can also be set significantly higher for example for extra regulatory testing. T2 - PATRAM 2025 CY - San Antonio, TX, USA DA - 27.07.2025 KW - IAEA Regu-lations KW - Fire Test Stand KW - Accident Scenario KW - Fire Qualification PY - 2025 SP - 1 EP - 10 CY - Institute of Nuclear Materials Management (INMM) AN - OPUS4-63872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naster, Maximilian A1 - Gleim, Tobias A1 - Wille, Frank T1 - Experimental and numerical analyses of hydrogen flames for the thermal testing of transport packages for radioactive material N2 - In this paper we present an update of the hydrogen based test rig for an ongoing feasibility study of using hydrogen as an energy source for the thermal testing of transport packages containing radioactive materials [ The test rig is capable of combusting hydrogen for a wide range of different burner geometries, mass flows , hydrogen blends and single jet flame operation s as well as a full array of burners for thermal testing can be set up. As this type of fire test according to the IAEA boundary conditions does not yet exist, a large number of preliminary investigations, safety assessments and simulations must be carried out in order to develop a viable concept for hydrogen fires. In a first step of the feasibility study, the temperature , structure, and radiative behavior of hydrogen jet flames must be surveyed. The simulation with a single hydrogen flame was investigated in a previous work. In the next step the results are used to study the interaction and structural behavior of multiple jet flames in proximity with varying nozzle distances. With the test rig completed, it will be possible in future works to design burner frames suitable for fire reference tests to make comparisons with pool and propane fires used in assessment procedure today. Thus, preliminary comparative numerical simulations are conducted to model the behavior of overlapping hydrogen jet flames using the software package Ansys®. This paper gives an overview on the current state and design of the test rig. Furthermore, the results of the simulations show that nozzle geometry, mas s flow and nozzle distance provide significant design margin for designing a test fire capable of fully engulfing a specimen. T2 - PVP2025, Pressure Vessels & Piping Conference CY - Montreal, Quebec, Canada DA - 20.07.2025 KW - Computational Fluid Dynamics (CFD) KW - Fire testing KW - Hydrogen KW - IAEA PY - 2025 SP - 1 EP - 10 AN - OPUS4-63864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -