TY - JOUR A1 - Kraft, Marco A1 - Würth, Christian A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of beta-NaYF_4:Yb~(3+),Er~(3+) nanoparticles: Measurements and simulations N2 - A systematic study of the luminescence properties of monodisperse β-NaYF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles (UCNPs) with sizes ranging from 12–43 nm is presented utilizing steady-state and time-resolved fluorometry. Special emphasis was dedicated to the absolute quantification of size- and environment-induced quenching of upconversion luminescence (UCL) by highenergy O–H and C–H vibrations from solvent and ligand molecules at different excitation power densities (P). In this context, the still-debated Population pathways of the 4F9/2 energy level of Er3+ were examined. Our results highlight the potential of particle size and P value for color tuning based on the pronounced near-infrared emission of 12 nm UCNPs, which outweighs the red Er3+ emission under “strongly quenched” conditions and accounts for over 50% of total UCL in water. Because current rate equation models do not include such emissions, the suitability of these models for accurately simulating all (de)population pathways of small UCNPs must be critically assessed. Furthermore, we postulate population pathways for the 4F9/2 energy level of Er3+, which correlate with the size-, environment-, and P-dependent quenching states of the higher Er3+ energy levels. KW - Nanoparticle KW - Nanosensor KW - Fluorescence KW - Upconversion KW - Upconversion nanoparticle KW - NIR KW - Photophysics KW - Lanthanide KW - Size KW - Surface chemistry KW - Quantum yield KW - Mechanism KW - Lifetime KW - Decay kinetics KW - Quenching KW - Diameter KW - Cyclohexane KW - Water PY - 2018 U6 - https://doi.org/10.1007/s12274-018-2159-9 VL - 11/12 SP - 6360 EP - 6374 PB - Springer Nature AN - OPUS4-50307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Moldenhauer, Daniel A1 - Byrne, L. A1 - Haase, H. A1 - Resch-Genger, Ute A1 - Koch, Matthias T1 - Complexes of the mycotoxins citrinin and ochratoxin A with aluminum ions and their spectroscopic properties N2 - The sensitive detection of the mycotoxin citrinin (CIT) utilizing ist fluorescence requires approaches to enhance the emission. In this respect, we studied the complexation of CIT and ochratoxin A (OTA) with Al3+ in methanol using absorption and fluorescence spectroscopy. In this context, an isocratic high performance liquid chromatography (HPLC) method using a polymer column and a fluorescence detector was also developed that enables the separation of the metal ion complexes from the free ligands and non-complexed Al3+. CIT and OTA showed distinct changes in their absorption and fluorescence properties upon Al3+-coordination, and the fluorescence of CIT was considerably enhanced. Analysis of the photometrically assessed titration of CIT and OTA with Al3+ using the Job plot method revealed 1:2 and 1:1 stoichiometries for the Al3+ complexes of CIT (Al:CIT) and OTA (Al:OTA), respectively. In the case of CIT, only one -diketone moiety participates in Al3+ coordination. These findings can be elegantly exploited for signal amplification and provide the base to reduce the limit of detection for CIT quantification by about an order of magnitude, as revealed by HPLC measurements using a fluorescence detector. KW - Complexation KW - Aluminum KW - Fluorescence KW - Job plot KW - HPLC-DAD/FLD PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-470502 SN - 2072-6651 VL - 10 IS - 12 SP - 538, 1 EP - 8 PB - MDPI CY - Basel AN - OPUS4-47050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wittkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding in time-domain flow cytometry N2 - Time-resolved flow cytometry represents an alternative to commonly applied spectral or intensity multiplexing in bioanalytics. At present, the vast majority of the reports on this topic focuses on phase-domain techniques and specific applications. In this report, we present a flow cytometry platform with time-resolved detection based on a compact setup and straightforward time-Domain measurements utilizing lifetime-encoded beads with lifetimes in the nanosecond range. We provide general assessment of time-domain flow cytometry and discuss the concept of this platform to address achievable resolution limits, data analysis, and requirements on suitable encoding dyes. Experimental data are complemented by numerical calculations on photon count numbers and impact of noise and measurement time on the obtained lifetime values. KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-465765 SN - 2045-2322 VL - 8 IS - 1 SP - 16715, 1 EP - 11 PB - Nature CY - London AN - OPUS4-46576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Choi, Youungeun A1 - Kotthoff, Lisa A1 - Olejko, L. A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - DNA origami-based Förster resonance energy-transfer nanoarrays and their application as ratiometric sensors N2 - DNA origami nanostructures provide a platform where dye molecules can be arranged with nanoscale accuracy allowing to assemble multiple fluorophores without dye–dye aggregation. Aiming to develop a bright and sensitive ratiometric sensor system, we systematically studied the optical properties of nanoarrays of dyes built on DNA origami platforms using a DNA template that provides a high versatility of label choice at minimum cost. The dyes are arranged at distances, at which they efficiently interact by Förster resonance energy transfer (FRET). To optimize array brightness, the FRET efficiencies between the donor fluorescein (FAM) and the acceptor cyanine 3 were determined for different sizes of the array and for different arrangements of the dye molecules within the array. By utilizing nanoarrays providing optimum FRET efficiency and brightness, we subsequently designed a ratiometric pH nanosensor using coumarin 343 as a pH-inert FRET donor and FAM as a pH-responsive acceptor. Our results indicate that the sensitivity of a ratiometric sensor can be improved simply by arranging the dyes into a well-defined array. The dyes used here can be easily replaced by other analyte-responsive dyes, demonstrating the huge potential of DNA nanotechnology for light harvesting, signal enhancement, and sensing schemes in life sciences. KW - DNA origami KW - FRET KW - Sensing KW - Ratiometric sensing KW - Fluorescence PY - 2018 U6 - https://doi.org/10.1021/acsami.8b03585 SN - 1944-8244 SN - 1944-8252 VL - 10 IS - 27 SP - 23295 EP - 23302 PB - ACS AN - OPUS4-46002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zavoiura, Oleksandr A1 - Resch-Genger, Ute A1 - Seitz, Oliver T1 - Quantum dot-PNA conjugates for target-catalyzed RNA detection N2 - Detection of pathogenic nucleic acids remains one of the most reliable approaches for the diagnosis of a broad range of diseases. Current PCR-based methods require experienced personnel and cannot be easily used for point-of care diagnostics, making alternative strategies for the sensitive, reliable, and cost-efficient detection of pathogenic nucleic acids highly desirable. Here, we report an enzyme-free method for the fluorometric detection of RNA that relies on a target-induced fluorophore transfer onto a semiconductor quantum dot (QD), uses PNA probes as selective recognition elements and can be read out with simple and inexpensive equipment. For QD-PNA conjugates with optimized PNA content, limits of detection of dengue RNA in the range of 10 pM to 100 nM can be realized within 5 h in the presence of a high excess of noncomplementary RNA. KW - FRET KW - Fluorescence KW - DNA KW - Assay KW - Quantum dot KW - Nano KW - Particle KW - Synthesis KW - Ligation Assay PY - 2018 U6 - https://doi.org/10.1021/acs.bioconjchem.8b00157 SN - 1043-1802 VL - 29 IS - 5 SP - 1690 EP - 1702 PB - ACS Publications AN - OPUS4-45120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Wang, Cui ED - Otto, S. ED - Dorn, M. ED - Kreidt, E. ED - Lebon, J. ED - Srsan, L. ED - di Martino-Fumo, P. ED - Gerhards, M. ED - Seitz, M. ED - Heinze, K. T1 - Deuterated Molecular Ruby with Record Luminescence Quantum Yield N2 - The recently reported luminescent chromium(III) complex 13+ ([Cr(ddpd)2]3+; ddpd=N,N’-dimethyl-N,N’-dipyridine-2-yl-pyridine-2,6-diamine) shows exceptionally strong near-IR emission at 775 nm in water under ambient conditions (F=11%) with a microsecond lifetime as the ligand design in 13+ effectively eliminates non-radiative decay pathways, such as photosubstitution, back-intersystem crossing, and trigonal twists. In the absence of energy acceptors, such as dioxygen, the remaining decay pathways are energy transfer to high energy solvent and ligand oscillators, namely OH and CH stretching vibrations. Selective deuteration of the solvents and the ddpd ligands probes the efficiency of these oscillators in the excited state deactivation. Addressing these energytransfer pathways in the first and second coordination sphere furnishes a record 30% quantum yield and a 2.3 millisecond lifetime for a metal complex with an earth-abundant metal ion in solution at room temperature. KW - Fluorescence KW - Quantum yield KW - Ligand design KW - Cr(III) KW - Complex KW - Oxygen sensor KW - NIR KW - Fluorescence lifetime PY - 2018 U6 - https://doi.org/10.1002/ange.201711350 SN - 1521-3773 VL - 57 IS - 4 SP - 1112 EP - 1116 PB - Wiley-VCH Verlag & Co. KGaA CY - Weinheim AN - OPUS4-44045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kothavale, S. A1 - Jadhav, A. G. A1 - Scholz, Norman A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Resch-Genger, Ute A1 - Sekar, N. T1 - Corrigendum to "Deep red emitting triphenylamine based coumarin-rhodamine hybrids with large stokes shift and viscosity sensing: Synthesis, photophysical properties and DFT studies of their spirocyclic and open forms" [Dyes Pigments 137 (2017) 329-341] N2 - We designed and synthesized triphenylamine based and coumarin fused rhodamine hybrid dyes and characterized using 1H, 13C NMR and HR-LCMS analysis. Both the newly synthesized hybrid dyes were found to show red shifted absorption as well as emissions and large Stokes shift (40e68 nm) as compared to the small Stokes shift (25e30 nm) of reported dyes Rhodamine B and 101. Photophysical properties of these dyes were studied in different solvents and according to the solvents acidity or basicity they preferred to remain in their spirocyclic or open form in different ratio. We studied the spirocyclic as well as open form derivatives of these dyes for their viscosity sensitivity in three different mixture of solvents i.e. polar-protic [EtOH-PEG 400], polar-aprotic [toluene-PEG 400] and non-polaraprotic [toluene-paraffin]. They are found to show very high viscosity sensitivity in polar-protic mixture of solvents [EtOH-PEG 400] and hence concluded that both polarity as well as viscosity factor worked together for the higher emission enhancement rather than only viscosity factor. As these dyes showed very high viscosity sensitivity in their spirocyclic as well as open form, they can be utilized as viscosity sensors in visible as well as deep red region. We also correlated our experimental finding theoretically by using Density Functional theory computations. KW - Dye KW - Fluorescence KW - Synthesis KW - Quantum yield KW - Lifetime KW - Coumarin KW - Rhodamine KW - Probe KW - Viscosity PY - 2018 U6 - https://doi.org/10.1016/j.dyepig.2017.06.021 SN - 0143-7208 SN - 1873-3743 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. VL - 149 SP - 929 PB - Elsevier CY - Amsterdam AN - OPUS4-44038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -