TY - JOUR
A1 - Wallis, Theophilus
A1 - Darvishi Kamachali, Reza
T1 - Linking atomistic and phase-field modeling of grain boundaries II: Incorporating atomistic potentials into free energy functional
N2 - The density-based phase-field model for grain boundary (GB) thermodynamics and kinetics has offered a broad range of applications in alloy and microstructure design. Originally, this model is based on a potential energy terms that is connected to the cohesive energy of a given substance. A more rigorous approach, however, is a full consideration of an interatomic potential over the possible range of distance and therefore density. In Manuscript I of this series, we developed and thoroughly analyzed the coarse-graining of atomistic GB structures. In this work (Manuscript II), we complete the coupling between atomic and mesoscale modeling of GBs by incorporating the full interatomic potentials into the density-based free energy functional. Using GB energies calculated from atomistic simulations, the coarse-graining approach and the atomistic-integrated density-based Gibbs free energy, we effectively evaluate the density gradient energy coefficient. We found that coupling the density-based model with atomistic potentials reveal physically-sound trends in the GB equilibrium properties. A universal equation was derived to describe the potential energy contribution to the GB energy and the gradient energy coefficient for BCC-Fe and -Mo GBs, similar to the universal equation for GB excess free volume presented in Manuscript I. The proposed approach provides a mesoscale density-based model rooted in atomic-scale characteristics for reliable predictions of GB properties.
KW - Density-based model
KW - Phase-field
KW - Grain boundary structure
KW - Grain boundary thermodynamics
PY - 2026
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654904
DO - https://doi.org/10.1016/j.actamat.2025.121787
SN - 1359-6454
VL - 305
SP - 1
EP - 17
PB - Elsevier
AN - OPUS4-65490
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Wallis, Theophilus
A1 - Ratanaphan, Sutatch
A1 - Darvishi Kamachali, Reza
T1 - Linking atomistic and phase-field modeling of grain boundaries I: Coarse-graining atomistic structures
N2 - The longstanding gap between atomistic and mesoscale simulations partly lies in the absence of a direct, physically grounded connection between atomic structure and mesoscale fields. In this work, we present a robust coarse-graining approach to systematically investigate the connection between phase-field and atomistic simulations of grain boundaries (GBs). The atomistic structures of 408 GBs in BCC-Fe and -Mo were studies to compute and analyze a continuous atomic density field. We discover a fundamental relationship between the GB density---defined as the average atomic density at the GB plane---and the GB excess free volume, an integral property of the boundary. An almost perfect linear correlation between the GB atomic density and GB excess free volume is identified. We also show that the width of BCC GBs, when scaled by the lattice constant, approaches a universal constant value. The relationships among GB density, width, and energy are systematically examined for various GB planes, and the GB energy--density correlations are classified with respect to GB types. It turns out that the atomic planes forming the GB strongly influence both the GB density and excess volume. The current results establish a dependable framework to bridge across scales, enabling density-based phase-field modeling of GBs with atomistic fidelity and enhancing the predictive reliability of mesoscale simulations.
KW - Density-based model
KW - Grain boundary structure
KW - Grain boundary thermodynamic
KW - Atomistic simulations
PY - 2026
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654872
DO - https://doi.org/10.1016/j.actamat.2025.121786
SN - 1359-6454
VL - 305
SP - 1
EP - 14
PB - Elsevier Inc.
AN - OPUS4-65487
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Pavlidis, Sotirios
A1 - Fischer, Eric W.
A1 - Opis-Basilio, Amanda
A1 - Bera, Ayan
A1 - Guilherme Buzanich, Ana
A1 - Álvarez-Sánchez, María
A1 - Wittek, Severin
A1 - Emmerling, Franziska
A1 - Ray, Kallol
A1 - Roemelt, Michael
A1 - Abbenseth, Josh
T1 - Ambiphilic Reactivity and Switchable Methyl Transfer at a T-Shaped Bi(NNN) Complex Enabled by a Redox-Active Pincer Ligand
N2 - We report the transition-metal-like reactivity of a geometrically constrained, ambiphilic bismuth(III) trisamide. Planarization of the Bi(III) center unlocks Bi−C bond formation when reacted with mild electrophiles (alkyl iodides and triflates) accompanied by two-electron oxidation of the utilized NNN pincer nligand. The preservation of the bismuth oxidation state is confirmed by single-crystal X-ray diffraction and X-ray absorption spectroscopy and corroborated by theoretical calculations. Sequential reduction of the oxidized ligand framework alters the reactivity of a generated Bi−Me unit, enabling controlled access to methyl cation, radical, and anion equivalents. The full [Bi(Me)(NNN)]+/•/− redox series was comprehensively characterized using NMR and EPR spectroscopy as well as spectro-electrochemistry. This work represents the first example of ligand-assisted, redox-neutral C−X bond splitting at bismuth, establishing a new paradigm for synthetic bismuth chemistry.
KW - Pincer ligand
KW - XAS
KW - Redox
PY - 2026
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654948
DO - https://doi.org/10.1021/jacs.5c18955
SN - 0002-7863
VL - 148
IS - 2
SP - 2683
EP - 2692
PB - American Chemical Society (ACS)
AN - OPUS4-65494
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Yao, Xingyu
A1 - Antunes, Margarida M.
A1 - Guilherme Buzanich, Ana
A1 - Cabanelas, Pedro
A1 - Valente, Anabela A.
A1 - Pinna, Nicola
A1 - Russo, Patrícia A.
T1 - Formation, Phase Transition, Surface, and Catalytic Properties of Cubic ZrO 2 Nanocrystals
N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-Performance sodium storage anode. The presence of iron triggers the loss of long-rangeorder through disorder of the FeO6 octahedra local structure, subsequentlyallowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites forpseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation.
KW - XAS
KW - Sodium-ion Batteries
PY - 2025
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654955
DO - https://doi.org/10.1021/acs.chemmater.5c01483
SN - 0897-4756
VL - 37
IS - 21
SP - 8568
EP - 8580
PB - American Chemical Society (ACS)
AN - OPUS4-65495
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Liu, Yanchen
A1 - Guilherme Buzanich, Ana
A1 - Alippi, Paola
A1 - Montoro, Luciano A.
A1 - Lee, Kug‐Seung
A1 - Jeon, Taeyeol
A1 - Weißer, Kilian
A1 - Karlsen, Martin A.
A1 - Russo, Patrícia A.
A1 - Pinna, Nicola
T1 - FeNb 2 O 6 as a High‐Performance Anode for Sodium‐Ion Batteries Enabled by Structural Amorphization Coupled with NbO 6 Local Ordering
N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-performance sodium storage anode. The presence of iron triggers the loss of long-range order through disorder of the FeO6 octahedra local structure, subsequently allowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites for pseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation.
KW - SIB
KW - XAS
KW - Sodium-ion Batteries
PY - 2025
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654931
DO - https://doi.org/10.1002/adma.202504100
SN - 0935-9648
VL - 37
IS - 46
SP - 1
EP - 13
PB - Wiley
AN - OPUS4-65493
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Faustino, Leandro A.
A1 - de Angelis, Leonardo D.
A1 - de Melo, Eduardo C.
A1 - Farias, Giliandro
A1 - dos Santos, Egon C.
A1 - Miranda, Caetano R.
A1 - Buzanich, Ana G.
A1 - Torresi, Roberto M.
A1 - de Oliveira, Paulo F.M.
A1 - Córdoba de Torresi, Susana I.
T1 - Urea synthesis by Plasmon-Assisted N2 and CO2 co-electrolysis onto heterojunctions decorated with silver nanoparticles
N2 - The N2 + CO2 co-electrolysis to urea synthesis has become a promising alternative to the energy intensive traditional processes for urea production. However, there are still challenges in this approach, especially due to the competition with HER (Hydrogen Evolution Reaction) leading to low efficiency. Electrochemistry assisted by localized surface plasmon resonance (LSPR) using metal nanoparticles has been reported to enhance different electrochemical reactions. Here we report an electrochemical LSPR assisted urea synthesis using Ag nanoparticles (NPs) supported on BiVO4/BiFeO3 catalyst mechanochemically synthesized. The electrochemical experiments were performed under dark and upon plasmon excitation at the LSPR region of Ag NPs. Our results demonstrated that exciting in the LSPR range, urea yield rate and Faradic efficiency were considerably improved with reduced overpotential, 19.2 μmol h− 1 g− 1 and FE 24.4% at +0.1 V vs RHE compared to 9.6 μmol h− 1 g− 1 and FE 9.4% at − 0.2 V vs RHE under dark conditions. Further in situ FTIR-RAS experiments for mechanism investigation revealed the presence of N-H and C-N intermediates and the real effect of Ag plasmon excitation on HER and N2 + CO2 co-electrolysis. Theoretical calculations confirm the energy of the species involved in C-N coupling as well the role of the complex catalytic sites, which agrees with XAS measurements.
KW - Plasmon-assited
KW - XAS
KW - Urea
KW - Electrocatalysis
PY - 2025
DO - https://doi.org/10.1016/j.cej.2025.163072
SN - 1385-8947
VL - 513
SP - 1
EP - 13
PB - Elsevier B.V.
AN - OPUS4-65492
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Bustos, Jenna
A1 - Shohel, Mohammad
A1 - Guilherme Buzanich, Ana
A1 - Zakharov, Lev
A1 - Buils, Jordi
A1 - Segado‐Centellas, Mireia
A1 - Bo, Carles
A1 - Nyman, May
T1 - Technetium and Rhenium Auto‐reduction, Polymerization and Lability towards Group VII Polyoxometalate Chemistry
N2 - AbstractGroup VII Tc and Re have long been studied to develop both radiopharmaceuticals and technologies for nuclear materials management. Fundamental research has targeted understanding this periodic table crossroads where polyoxometalates meets metal‐metal bonded complexes. Here we have isolated green hygroscopic and metastable crystals of (ReVI,oct)2(ReVII,tet)2(OH)2(O)12⋅H2O (ReVI,VII‐green, tet=tetrahedral, oct=octahedral), determined by single‐crystal x‐ray diffraction. In addition to color, Re‐L1 X‐ray absorption near‐edge spectroscopy confirms the reduced oxidation state. ReVI,VII‐green provides the first demonstration of Re autoreduction, long‐observed for Mn and Tc. We also isolated and structurally characterized [Tc4O4(H2O)2(ReO4)14]2− (Tc4Re14) polyanion crystals that contain Tc(V) and Re(VII), consistent with greater stability of reduced Tc compared to reduced Re. Small angle X‐ray scattering of both compounds and prior‐reported polyanion [Tc4O4(H2O)2(TcO4)14]4− (Tc20) dissolved in acetonitrile indicated a qualitative lability order of oxo‐linkages of Re‐O−Re Re‐O−Tc Tc‐O−Tc, and lability of Tc20 was also probed by 99Tc nuclear magnetic resonance spectroscopy. Computation provided insight into 99Tc chemical shifts as well as lability. Based on both reducibility and solution phase dynamics of polynuclear compounds investigated here, Re is an imperfect surrogate for Tc, and further expansion of group VII polyoxometalate chemistry seems promising.
KW - XANES
KW - Polyoxometalate
KW - Technetium
PY - 2025
DO - https://doi.org/10.1002/chem.202404144
SN - 0947-6539
VL - 31
IS - 21
SP - 1
EP - 7
PB - Wiley-VCH Verl.
AN - OPUS4-65491
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Gugin, Nikita
A1 - Schwab, Alexander
A1 - Carraro, Francesco
A1 - Tavernaro, Isabella
A1 - Falkenhagen, Jana
A1 - Villajos, Jose
A1 - Falcaro, Paolo
A1 - Emmerling, Franziska
T1 - ZIF-8-based biocomposites via reactive extrusion: towards industrial-scale manufacturing
N2 - Mechanochemistry, a sustainable synthetic method that minimizes solvent use, has shown great promise in producing metal–organic framework (MOF)-based biocomposites through ball milling. While ball milling offers fast reaction times, biocompatible conditions, and access to previously unattainable biocomposites, it is a batch-type process typically limited to gram-scale production, which is insufficient to meet commercial capacity. We introduce a scalable approach for the continuous solid-state production of MOF-based biocomposites. Our study commences with model batch reactions to examine the encapsulation of various biomolecules into Zeolitic Imidazolate Framework-8 (ZIF-8) via hand mixing, establishing a foundation for upscaling. Subsequently, the process is scaled up using reactive extrusion, enabling continuous and reproducible kilogram-scale production of bovine serum albumin (BSA)@ZIF-8 with tunable protein loading. Furthermore, we achieve the one-step formation of shaped ZIF-8 extrudates encapsulating clinical therapeutic hyaluronic acid (HA). Upon release of HA from the composite, the molecular weight of HA is preserved, highlighting the industrial potential of reactive extrusion for the cost-effective and reliable manufacturing of biocomposites for drug-delivery applications.
KW - Mechanochemistry
KW - Extrusion
KW - Biocompoites
KW - MOFs
PY - 2026
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654777
DO - https://doi.org/10.1039/D5TA08276E
SN - 2050-7496
SP - 1
EP - 14
PB - Royal Society of Chemistry
AN - OPUS4-65477
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Schusterbauer, Robert
A1 - Mrkwitschka, Paul
A1 - Sahre, Mario
A1 - Corrao, Elena
A1 - Zurutuza, Amaia
A1 - Doolin, Alexander
A1 - Pellegrino, Francesco
A1 - Radnik, Jörg
A1 - Donskyi, Ievgen S.
A1 - Hodoroaba, Vasile-Dan
T1 - Correlative Chemical Imaging to Reveal the Nature of Different Commercial Graphene Materials
N2 - Proper physicochemical characterization of advanced materials and complex industrial composites remains a significant challenge, particularly for nanomaterials, whose nanoscale dimensions and mostly complex chemistry challenge the analysis. In this work, we employed a correlative analytical approach that integrates atomic force microscopy (AFM), scanning electron microscopy (SEM) coupled with energy‐dispersive X‐ray spectroscopy (EDS), time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), Auger electron spectroscopy (AES), and Raman spectroscopy. This combination enables detailed chemical and structural characterization with sub‐micrometer spatial resolution. Three commercial graphene‐based materials of varying complexity were selected and investigated to test the analytical performance of this approach. Furthermore, one of the commercial graphene oxide samples was chemically functionalized via amination and fluorination. This allowed us to assess how surface modifications influence both the material properties and the limits of the applied analytical techniques.
KW - Analytical methods
KW - Commercial products
KW - Correlative analysis
KW - Graphene
KW - Surface imaging
PY - 2026
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654765
DO - https://doi.org/10.1002/smtd.202502344
SN - 2366-9608
SP - 1
EP - 10
PB - Wiley VHC-Verlag
AN - OPUS4-65476
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Yu, Jialu
A1 - Oelze, Marcus
A1 - Schannor, Mathias
A1 - Nordstad, Simon
A1 - Vogl, Jochen
T1 - New Potential Haematite and Magnetite Reference Materials for Iron Isotope Measurements by Solution Nebulisation MC ‐ ICP ‐ MS and by In Situ ns ‐ LA ‐ MC ‐ ICP ‐ MS
N2 - Iron isotope ratios of haematite (Fe2O3) and magnetite (Fe3O4) provide insights into geochemical, environmental and planetary processes. In most studies, Fe isotope measurements are commonly performed using solution nebulisation multi-collector inductively coupled plasma-mass spectrometry (SN-MC-ICP-MS). Nanosecond laser ablation multi-collector inductively coupled plasma-mass spectrometry (ns-LA-MC-ICP-MS) requires minimal sample preparation, and provides spatially resolved variation of iron isotopes at micro-scale. However, homogeneous and matrix-matched haematite/magnetite reference materials are lacking for precise in situ isotopic measurement. The iron isotope ratios of two potential reference materials resembling natural haematite (HMIE-NP-B01) and natural magnetite (MAKP-NP-B01) were characterised. Size fractions between 5–63 μm of the powdered Fe oxides were milled to nanoparticles, freeze-dried, homogenised, and pressed into pellets. The materials were then evaluated using SN-MC-ICP-MS and LA-MC-ICP-MS. Sample powders of the two materials were measured by SN-MC-ICPMS after sample digestion and column separation and pressed pellets were analysed directly via ns-LA-MC-ICP-MS. In both cases iron isotope delta values are reported relative to the certified reference material IRMM-014, used as the bracketing standard (calibrator). The solution measurements yielded δ56Fe values of -0.25 ± 0.08‰ (N = 13, 2s) for HMIE-NP-B01, and -0.05 ± 0.09‰ (N = 12, 2s) for MAKP-NP-B01, considered as the preferred Fe isotope delta values. In situ isotopic analysis via ns-LA-MC-ICP-MS yielded δ56Fe values of -0.28 ± 0.28‰ (N = 19, 2s) for HMIE-NP-B01 and -0.12 ± 0.24‰ (N = 22, 2s) for MAKP-NP-B01, consistent with the solution Fe isotope data. The homogeneity of Fe isotopes of the pellets was evaluated by ns-LA-MC-ICP-MS analyses of three different positions to further confirm that both materials are isotopically homogeneous. Both materials can be considered as potential quality control and bracketing reference materials for Fe isotopic measurements by in situ ns-LA-MC-ICP-MS analysis.
KW - Laser ablation
KW - Fe isotope
KW - Fe-oxides
PY - 2026
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654755
DO - https://doi.org/10.1111/ggr.70037
SN - 1639-4488
SP - 1
EP - 12
PB - John Wiley & Sons Ltd.
AN - OPUS4-65475
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -