TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo T2 - MATEC Web of Conferences 364 N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559979 DO - https://doi.org/10.1051/matecconf/202236403007 SN - 2261-263X SP - 1 EP - 8 AN - OPUS4-55997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fontoura Barroso, Daniel A1 - Epple, Niklas A1 - Niederleithinger, Ernst T1 - A Portable Low-Cost Ultrasound Measurement Device for Concrete Monitoring JF - Inventions: Special Issue "Low-Cost Inventions and Patents" N2 - This paper describes a new ultrasonic measuring device called “W-Box”. It was developed based on the requirements of the DFG Forschergruppe (research unit) CoDA for a portable device for monitoring of concrete specimens, models and actual structures using embedded ultrasonic transducers as well as temperature and humidity sensors. The W-Box can send ultrasonic pulses with a variable frequency of 50–100 kHz to one selectable transducer and records signals from up to 75 multiplexed channels with a sample rate of 1 MHz and a resolution of 14 bits. In addition, it measures temperature and humidity with high accuracy, adjustable amplification, restarts automatically after a power failure and can be fully controlled remotely. The measured data are automatically stored locally on-site data quality checks and transferred to remote servers. The comparison of the W-Box with a laboratory setup using commercial devices proves that it is equally reliable and precise, at much lower cost. The W-Box also shows that their measurement capacities, with the used embedded ultrasonic transducers, can reach above 6 m in concrete. KW - Low-cost KW - Coda wave interferometry KW - Ultrasound KW - IoT KW - Non-destructive testing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546756 DO - https://doi.org/10.3390/inventions6020036 SN - 2411-5134 VL - 6 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel, Switzerland AN - OPUS4-54675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liao, Chun-Man A1 - Hille, Falk A1 - Fontoura Barroso, Daniel A1 - Niederleithinger, Ernst ED - Papadrakakis, M. ED - Fragiadakis, M. T1 - Monitoring of a prestressed bridge model byultrasonic measurement and vibration recordings T2 - COMPDYN 2021 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - The aim of this work is to improve the current structural health monitoring (SHM) methods for civil structures. A field experiment was carried out on a two-span bridge with a built-in un-bonded prestressing system. The bridge is a 24-metre long concrete beam resting on three bear-ings. Cracks were formed subsequently when a prestressing force of 350 kN was changed to 200 kN, so that different structural states could be demonstrated. The structural assessment of this reference bridge was accomplished by the non-destructive testing using ultrasonic devices and vibration measurements. The ultrasonic velocity variations were investigated by using the coda wave interferometry method. The seismic interferometry technique was applied to the vi-bration recordings to reconstruct the wave propagation field in the bridge. This investigation shows that the wave velocity is sensitive to the current structural state and can be considered as the damage indicator. Overall, the implementation of coda cave interferometry and seismic interferometry technique facilitates structural health monitoring (SHM) in civil engineering. T2 - COMPDYN 2021 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering CY - Online meeting DA - 28.06.2021 KW - Structural health monitoring KW - Non-destructive testing KW - Coda wave interferometry KW - Seismic interferometry KW - Ultrasonic measurement KW - Prestress PY - 2021 SP - 1 EP - 9 PB - European Community on Computational Methods in Applied Sciences (ECCOMAS) AN - OPUS4-52957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - News from NDT@BAM N2 - The presentation summarizes some recent research at BAM in the field of NDT in civil engineering. the firste xample decribes lab experiments on the degardation of concrete during tunnel fires. Radar measuremenst were sucessfully used to detect interior damage. The second example decribes the first ever experiment on using muon imaging to evaluate concrete constructions. T2 - TRB 100th Annual Meeting, Subcommittee AKB40(1) CY - Online meeting DA - 05.01.2021 KW - Non-destructive testing KW - Civil engineering KW - Tunnel fire KW - Radar KW - Muon imaging PY - 2021 AN - OPUS4-52053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Wiggenhauser, Herbert A1 - Helmerich, Rosemarie A1 - Krause, Martin A1 - Mielentz, Frank A1 - Niederleithinger, Ernst A1 - Taffe, Alexander A1 - Wilsch, Gerd ED - Naus, D. T1 - Non-destructive Testing of Nuclear Power Plant Concrete Structures State of the Art Report T2 - BAM research report N2 - Nuclear Power Plants have been in operation for ca. 50 years. Based on this experience, non-destructive testing tasks specific to thick and highly reinforced nuclear containment structures have materialized. The performance based Service life extension of existing NPPs also needs a measurement based decision to support continuing the service of the concrete part of the installations. By nature, concrete is a very durable material and any natural Deterioration processes may take a long time to become critical to the structure. The experience of more than 50 years of service limits the testing tasks to a few ones which are not yet solved. Research in NDT of concrete structures is performed by many research institutions all over the world with different technical and systematic approaches. Results are mainly obtained on laboratory specimens, sometimes additional field studies are reported. This research takes place independently without coordination and as a result, the outcomes mostly lack full comparability. Software for data analysis has become indispensable and very powerful. This part of testing needs more attention when it comes to evaluate test results. Validation of NDE solutions is becoming a critical part in concrete structure testing. Validation is by definition the proof that a customer´s requirements in the test are being met by the testing solution. This includes equipment, personnel qualification and data analysis. In the following tables, the research recommendation Validation is used in the sense, that proof of the performance of existing solutions needs to be adressed. In general, a validation methodology for NDE solutions for concrete testing in itself needs to be researched and established. Comparability of research also needs an accepted and easily accessible reference. From experience, it is almost impossible to manufacture exact copies of test specimens at different locations. Round Robin tests are therefore needed to evaluate the performance of a test. Data evaluation is generally done using dedicated software, sometimes Hardware dependant and not interchangeable between systems. Software is ever more increasingly becoming more powerful and sophisticated. An in-depth evaluation needs to address the comparability and validation of Software used for data analysis and evaluation. The vision of a unified software pool for NDE investigations would undoubtedly support research tremendously. Quantitative NDE is mostly recommended to assess the condition of a structure. However, qualitative data can be very useful, especially for processes which change the material properties or deteriorate the structure (e.g. corrosion of reinforcement). The need for reliable baseline data is a key factor for such monitoring tasks. KW - Nuclear structures KW - Non-destructive testing KW - State of the art KW - Research needs PY - 2013 SP - 1 EP - 120 PB - BAM CY - Berlin AN - OPUS4-51049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abraham, O. A1 - Niederleithinger, Ernst A1 - Chapeleau, X. A1 - Klikowicz, P. A1 - Brühwiler, E. A1 - Bassil, A. A1 - Wang, Xin A1 - Chakraborty, J. A1 - Bayane, I. A1 - Leduc, D. A1 - Salamak, M. A1 - Katunin, A. A1 - Sørensen, J.D. T1 - Addressing the need to monitor concrete fatigue with nondestructive testing: Results of infrastar European project T2 - 2018 SMT Proceedings N2 - Fatigue is one of the most prevalent issues, which directly influences the service life expectancy of concrete structures. Fatigue has been investigated for years for steel structures. However, recent findings suggest that concrete structures may also be significantly subjected to fatigue phenomena that could lead to premature failure of certain structural elements. To date, fatigue of reinforced concrete has been given little focus. Knowledge on the influence factors and durability/capacity effects on this material should be improved. Current technological means to measure fatigue in civil structures like bridges and wind turbines (both onshore and offshore) are outdated, imprecise and inappropriate. Meanwhile, this topic has got much more attention as time-variant loading on concrete structures plays an increasing role, e.g. in bridges with increasing traffic and heavier trucks, and for wind turbines for renewable energy production, e.g. for offshore wind turbine support structures affected by wind and waves. The European Innovative Training Networks (ITN) Marie Skłodowska-Curie Actions project INFRASTAR (Innovation and Networking for Fatigue and Reliability Analysis of Structures - Training for Assessment of Risk) provides research training for 12 PhD students. The project aims to improve knowledge for optimizing the design of new structures as well as for more realistic verification of structural safety and more accurate prediction of the remaining fatigue lifetime of existing concrete structures. First, the INFRASTAR research framework is detailed. Then it will be exemplified through the presentation of the major results of the four PhD students involved in the work package dealing with auscultation and monitoring. This includes the development and improvement of Fiber Optics (FO) and Coda Wave Interferometry (CWI) for crack sizing and imagery, new sensor technologies and integration, information management, monitoring strategy for fatigue damage investigation and lifetime prediction. T2 - SMT and NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.08.2018 KW - Concrete KW - Fatigue KW - Crack KW - Monitoring KW - Non-destructive testing PY - 2019 UR - https://asnt.org/smt18papers SN - 978-1-57117-456-7 VL - 11/19 SP - 2 EP - 13 PB - The American Society for Nondestructive Testing, Inc. CY - Columbus, OH, USA AN - OPUS4-47237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abraham, O. A1 - Niederleithinger, Ernst A1 - Chapeleau, B. A1 - Klikowicz, P. A1 - Brühwiler, E. A1 - Bassil, A. A1 - Wang, Xin A1 - Chakraborty, J. A1 - Bayane, I. A1 - Leduc, D. A1 - Salamak, M. A1 - Katunin, A. A1 - Sörensen, J. D. T1 - Addressing the need to monitor concrete fatigue with non destructive testing: preliminary results of infrastar European project N2 - Fatigue is one of the most prevalent issues, which directly influences the service life expectancy of concrete structures. Fatigue has been investigated for years for steel structures. However, recent findings suggest that concrete structures may also be significantly subjected to the fatigue phenomena that could lead to premature failure of certainfatigue prone structural elements. To date, fatigue of reinforced concrete has been given little focus. and Kknowledge on the influence factors and durability/capacity effects on this material should be improved. Current technological means to measure fatigue in civil structures like bridges and wind turbines (both onshore and offshore) are outdated, imprecise and inappropriate. Meanwhile, this topic has got much more attention as dynamic loading on concrete structures plays an increasing role, e.g. in bridges with increasing traffic and heavier trucks, in wind energy production due to inherent vibrations e.g. in offshore wind turbine support structures affected by wind and waves. The European Innovative Training Networks (ITN) Marie Skłodowska-Curie Actions project INFRASTAR (Innovation and Networking for Fatigue and Reliability Analysis of Structures - Training for Assessment of Risk) provides research training for 12 PhD students. The project aims to improve knowledge for optimizing the design of new structures as well as for more realistic verification of structural safety and more accurate prediction of the remaining fatigue lifetime of existing structures. First, the INFRASTAR research framework is detailed. Then it will be exemplified through the presentation of the major results of the four PhD students involved in the work package dealing with auscultation and monitoring. This includes the development and improvement of Fiber Optics (FO) and Coda Wave Interferometry (CWI) for crack sizing and imagery, new sensor technologies and integration, information management, monitoring strategy for fatigue damage investigation and lifetime prediction. T2 - ASNT SMT/NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.8.2018 KW - Concrete KW - Fatigue KW - Non-destructive testing KW - Reliabiilty PY - 2018 AN - OPUS4-45862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Progress in using geophysical methods for foundation quality assurance and inspection N2 - Modern geophysical methods might be either directly applied to foundations or integrated into existing testing schemes to assist in quality assurance and inspections. This paper gives an overview on available ideas and some more detailed examples from the author `s work including: - Vibrator technologies to improve pile integrity testing. - Ideas from vertical seismic profiling used in multichannel pile inspection - Cross- and downhole seismics to check the diameter of jet grouting columns - Improving the parallel seismic methods for precise length measurement of piles and foundation walls  Seismic migration methods to improve ultrasonic imaging of foundation slabs  Seismological tools to monitor subtle changes in concrete constructions The author strongly believes that the cooperation between geophysics and civil engineering, which is obviously becoming stronger and stronger, will lead to a large number of innovative approaches for investigations tasks currently still unresolved. A lot of challenges and chances for science and technology are right here. T2 - SAGEEP 2016 CY - Denver, CO, USA DA - 20.03.2016 KW - Non-destructive testing KW - Piles, foundations KW - Slabs KW - Parallel seismic KW - Vibrator KW - Integrity PY - 2016 AN - OPUS4-35706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Progress in using geophysical methods in foundation quality assurance and inspection T2 - Proceedings of SAGEEP 2016 N2 - Modern geophysical methods might be either directly applied to foundations or integrated into existing testing schemes to assist in quality assurance and inspections. This paper gives an overview on available ideas and some more detailed examples from the author `s work including: - Vibrator technologies to improve pile integrity testing. - Ideas from vertical seismic profiling used in multichannel pile inspection - Cross- and downhole seismics to check the diameter of jet grouting columns - Improving the parallel seismic methods for precise length measurement of piles and foundation walls - Seismic migration methods to improve ultrasonic imaging of foundation slabs - Seismological tools to monitor subtle changes in concrete constructions The author strongly believes that the cooperation between geophysics and civil engineering, which is obviously becoming stronger and stronger, will lead to a large number of innovative approaches for investigations tasks currently still unresolved. A lot of challenges and chances for science and technology are right here. T2 - SAGEEP CY - Denver, CO, USA DA - 20.03.2016 KW - Non-destructive testing KW - Piles KW - Foundations KW - Slabs KW - Parallel seismic KW - Vibrator KW - Integrity PY - 2016 SP - paper 45, 1 EP - 7 AN - OPUS4-35704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiggenhauser, Herbert A1 - Niederleithinger, Ernst T1 - NDT-CE 2015: International symposium non-nestructive testing in civil engineering JF - Mitteilungen / Deutsche Geophysikalische Gesellschaft N2 - The legend continued: The International Symposium NonDestructive Testing in Civil Engineering (NDT-CE) had returned to Berlin. The Bundesanstalt für Materialforschung und -prüfung (BAM) and the Technical University of Berlin (TUB) hosted this prestigious event in the industrial landmark building Peter-Behrens-Halle and the Test Site Technical Safety (TTS) in Horstwalde in September 2015. Almost 300 participants from more than 35 countries gathered to present recent research, exchange knowledge and to lest the newest equipment in NDT-CE. This symposium, held regularly in various locations all over the world, was organized for the third time in Berlin and is by far the largest of its kind. KW - Non-destructive testing KW - Civil engineering KW - Conference PY - 2015 SN - 0934-6554 IS - 3 SP - 53 EP - 54 PB - Deutsche Geophysikalische Gesellschaft CY - Münster AN - OPUS4-35097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -