TY - JOUR A1 - Kislenko, Evgeniia A1 - Incel, A. A1 - Gawlitza, Kornelia A1 - Sellergren, B. A1 - Rurack, Knut T1 - Towards molecularly imprinted polymers that respond to and capture phosphorylated tyrosine epitopes using fluorescent bis-urea and bis-imidazolium receptors JF - Journal of Materials Chemistry B N2 - Early detection of cancer is essential for successful treatment and improvement in patient prognosis. Deregulation of post-translational modifications (PTMs) of proteins, especially phosphorylation, is present in many types of cancer. Therefore, the development of materials for the rapid sensing of low abundant phosphorylated peptides in biological samples can be of great therapeutic value. In this work, we have synthesised fluorescent molecularly imprinted polymers (fMIPs) for the detection of the phosphorylated tyrosine epitope of ZAP70, a cancer biomarker. The polymers were grafted as nanometer-thin shells from functionalised submicron-sized silica particles using a reversible addition-fragmentation chain-transfer (RAFT) polymerisation. Employing the combination of fluorescent urea and intrinsically cationic bis-imidazolium receptor cross-linkers, we have developed fluorescent sensory particles, showing an imprinting factor (IF) of 5.0. The imprinted polymer can successfully distinguish between phosphorylated and non-phosphorylated tripeptides, reaching lower micromolar sensitivity in organic solvents and specifically capture unprotected peptide complements in a neutral buffer. Additionally, we have shown the importance of assessing the influence of counterions present in the MIP system on the imprinting process and final material performance. The potential drawbacks of using epitopes with protective groups, which can co-imprint with targeted functionality, are also discussed. KW - Functional monomers KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588089 DO - https://doi.org/10.1039/d3tb01474f SN - 2050-750X SP - 1 EP - 10 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-58808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - PFAS Sensors N2 - This contribution provides an introduction to the development of sensors for PFAS analysis, presents the most common approaches, and describes the opto-microfluidic strategy in combination with polymerizable indicators and detection matrices currently being pursued by the Chemical and Optical Sensing Division at BAM. T2 - Advancements of Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS) – Second Workshop 2023 CY - Berlin, Germany DA - 19.09.2023 KW - PFAS KW - Sensors KW - Molecularly imprinted polymers KW - Microfluidics KW - Fluorescence PY - 2023 AN - OPUS4-58533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kubheka, G. A1 - Climent, Estela A1 - Tobias, Charlie A1 - Rurack, Knut A1 - Mack, J. A1 - Nyokong, T. T1 - Multiplexed Detection of Human Papillomavirus Based on AzaBODIPY-Doped Silica-Coated Polystyrene Microparticles JF - Chemosensors N2 - Human papillomavirus (HPV) DNA detection can enable the early diagnosis of high-risk HPV types responsible for cervical cancer. HPV detection is also essential for investigating the clinical behavior and epidemiology of particular HPV types, characterization of study populations in HPV vaccination trials and monitoring the efficacy of HPV vaccines. In this study, two azaBODIPY dyes (1 and 2) were used as references and were doped into polystyrene particles (PS40), while a short HPV DNA single strand was used as a target molecule and was covalently bound to the silica shell. These particles were employed as optical probes in 1:1 hybridization assays, and their potential applicability as a tool for multiplex assays for the detection of different strands of HPV was evaluated using flow cytometry. A good separation in the fluorescence of the four different voncentrations prepared for each dye was observed. To perform the hybridization assays, HPV18, HPV16, HPV11 and HPV6 single strands were attached to the particles through EDC-mediated coupling. The c-DNA-1-PS40 and c-DNA-2-PS40 particles exhibited low limit of detection (LOD) and quantification (LOQ) values for HPV11, and a narrow detection range was obtained. Multiplexed assay experiments were successfully performed for both particles, and the results proved that c-DNA-1-PS40 could potentially be used as a tool for multiplexing assays and merits further in-depth study in this context. KW - Flow cytometry KW - BODIPY dyes KW - Core-shell particles KW - Multiplexed assay KW - Human papillomavirus PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567358 DO - https://doi.org/10.3390/chemosensors11010001 SN - 2227-9040 VL - 11 IS - 1 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-56735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Gotor, Raúl A1 - Johann, Sergej A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Bell, Jérémy T1 - Fluorescent Hydrophobic Test Strips with Sterically Integrated Molecular Rotors for the Detection of Hydrocarbons in Water and Soil with an Embedded Optical Read-Out JF - Energy and Fuels N2 - Contamination of natural bodies of water or soil with oils and lubricants (or generally, hydrocarbon derivatives such as petrol, fuels, and others) is a commonly found phenomenon around the world due to the extensive production, transfer, and use of fossil fuels. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPHs) in water and soil. The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol (4-DNS-OH). This dye is embedded in a hydrophobic polymeric matrix (polyvinylidene fluoride), avoiding interactions with water and providing a robust support for use in a test strip fashion. Together with the strips, an embedded optical system was designed for fluorescence signal read-out, featuring a Bluetooth low-energy connection to a commercial tablet device for data processing and analysis. This system works for the detection and quantification of TPHs in water and soil through a simple extraction protocol using a cycloalkane solvent with a limit of detection of 6 ppm. Assays in surface and sea waters were conclusive, proving the feasibility of the method for in-the-field operation. KW - Test strip KW - Sensor KW - Smartphone KW - Fluorescence KW - Test Streifen KW - Sensoren KW - Fluoreszenz KW - Petrol KW - Öl PY - 2023 DO - https://doi.org/10.1021/acs.energyfuels.3c01175 SN - 0887-0624 SP - 1 EP - 6 PB - American Chemical Society CY - Washington, United States AN - OPUS4-57892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sun, Yijuan A1 - Pérez-Padilla, Víctor A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescence Detection of Perfluoroalkyl Carboxylic Acids with a Miniaturised Assay N2 - Per- and polyfluoroalkyl substances (PFAS) are a class of man-made organo-fluorine chemicals that have become environmental contaminants of emerging concern, originating from a variety of materials such as adhesive, stain- and oil-resistant coatings, firefighting foams, etc. The high strength of this C-F bond makes PFAS thermodynamically stable and resistant to (bio)degradation, thus retaining them in the environment over time. Perfluoroalkyl carboxylic acids (PFCAs), one category of the most used PFAS, consist of a fully fluorinated carbon backbone and a charged carboxylic acid headgroup, and have been classified as Substances of Very High Concern (SVHC) and added to the REACH Candidate List due to their persistence in the environment, non-biodegradability and toxicological effects.[1-2] Traditional techniques for the analysis of PFCAs include GC-MS, HRMS and HPLC-based approaches, which are laborious, not portable, costly and require trained personnel. In contrast, fluorescence assays can be designed as easy-to-operate, portable and cost-effective methods with high sensitivity and fast response. Integration of fluorescent probes with an adequately miniaturized assay enables a promising alternative for PFCAs analysis. Here, a novel guanidine fluorescent probe has been synthesized and fully characterized for the detection of PFCAs in a biphasic extract-&-detect assay. The fluorescent probe was then incorporated into polymeric matrices supported by a red dye-doped SiO2 nanoparticle to construct a dual-emission sensing platform. Such a system allows precise and selective detection of PFCAs, reducing the interference of competitors, matrix effects and other factors except for the PFCAs. The system was then employed in a droplet-based microfluidic setup which offers a portable and easy to operate detection platform. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - PFAS KW - MIP KW - Fluorescence KW - Microfluidics KW - Fluorezsenz KW - Mikrofluidik PY - 2023 AN - OPUS4-58527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Empowering test strips for rapid, highly sensitive and multiplexed analysis of small molecule analytes at a point-of-need N2 - In particular, the rapid development of lateral flow assays as indispensable tools for everyone to contain the SARS-CoV-2 pandemic has fuelled the global demand for analytical tests that can be used outside dedicated laboratories. In addition to their use in medical diagnostics, rapid tests and assays have become increasingly important in various fields such as food safety, security, forensics, and environmental management. The advantage is obvious: taking the assay directly to the sample minimizes the time between suspicion and decision-making, allowing faster action. Especially today, when mobile communication devices with powerful computing capabilities and built-in cameras are ubiquitous, more people than ever before around the world have the basic skills to operate a powerful detector at their fingertips. This sets the stage for a much wider use of analytical measurements in terms of prognosis and prevention, enabling professional laypersons in particular. However, current strip-based systems are primarily focused on single parameter analysis, whether it is SARS-CoV-2 biomarkers, blood glucose levels, or lead concentrations in water samples. Industrial applications of such methods also often still rely on single-parameter assays, requiring multiple runs even for a limited number of key parameters. Overcoming these limitations depends on developing low-number multiplexing strategies that ensure robustness, reliability, speed, ease of use, and sensitivity. This lecture will give an overview of several generic approaches developed in recent years to address these challenges. It will highlight how the synergy of supramolecular (bio)chemistry, luminescence detection, hybrid (nano)materials and device miniaturization can result in powerful (bio)analytical assays that can be used at a point-of-need.1-5 Selected examples will introduce key aspects of such systems that include tailored signaling mechanisms and recognition elements, materials functionalization and device integration, including hybrid nanomaterials, gated indicator release systems, strip modification, and smartphone-based analysis. T2 - 15th Rapid Methods Europe Conference CY - Amsterdam, Netherlands DA - 06.11.2023 KW - Test strips KW - Lateral flow assays KW - Explosives KW - Pesticides KW - Rapid testing KW - Multiplexing PY - 2023 AN - OPUS4-58816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Climent, Estela A1 - Gotor, Raúl A1 - Tobias, Charlie A1 - Martin-Sanchez, Pedro M. A1 - Rurack, Knut T1 - Dipstick coated with polystyrene-silica core-shell particles for the detection of microbiological fuel contamination N2 - Microbial contamination of fuels by fungi or bacteria poses risks such as corrosion and fuel system fouling, which can lead to critical problems in refineries and distribution systems and has a significant economic impact at every stage of the process. Many factors have been cited as being responsible for microbial growth, like the presence of water in the storage tanks. In fact, only 1 % water in a storage system is sufficient for the growth of microorganisms like bacteria or yeasts, as well as for the development of fungal biomass at the oil/water interface. This work presents a rapid test for the accurate determination of genomic DNA from aqueous fuel extracts. The detection is based on the use of polystyrene-mesoporous silica core-shell particles onto which modified fluorescent molecular beacons are covalently grafted. These beacons contain in the hairpin loop a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA subunit. The designed single-stranded molecular beacon contained fluorescein as an internal indicator and a quencher in its proximity when not hybridized. Upon hybridization in presence of the target sequence, the indicator and the quencher are spatially separated, resulting in fluorescence enhancement. To perform the assay the developed particles were deposited on different glass fibre strips to obtain a portable and sensitive rapid test. The assays showed that the presence of genomic DNA extracts from bacteria down to 50–70 μg L–1 induced a fluorescence response. The optical read-out was adapted for on-site monitoring by fitting a 3D-printed case to a conventional smartphone, taking advantages of the sensitivity of the CMOS detector. Such embedded assembly enabled the detection of genomic DNA in aqueous extracts down to the mg L–1 range and represents an interesting step toward on-site monitoring of fuel contamination. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - Teststreifen KW - Test strip KW - Microbial KW - Mikrobiell KW - Smartphone KW - Particles KW - Partikeln PY - 2023 AN - OPUS4-58526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut A1 - Biyikal, Mustafa T1 - Development of a Lab-on-a-Chip for the Detection of Nerve Agents with a Handheld Device N2 - The development of a Lab-on-a-Chip (LoC) is presented, which can detect reactive phosphorous compounds in the gas phase in combination with an optochemical hand-held sensor. The LoC prototype contains three pairs of sensing materials containing fluorescent indicator dyes in various carrier materials. By measuring the fluorescence response to phosphoryl chloride, a surrogate compound, the detection of chemical warfare agents (CWAs) in gas phase becomes possible within seconds, introducing a novel approach to CWA detection. T2 - IEEE Sensors Conference CY - Vienna, Austria DA - 29.10.2023 KW - Chemical warfare agents KW - Lab-on-a-chip KW - Handheld sensors KW - Toxic industrial chemicals KW - Fluorescence PY - 2023 AN - OPUS4-58815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biyikal, Mustafa A1 - Rurack, Knut T1 - Development of a Lab-on-a-Chip for the Detection of Nerve Agents with a Handheld Device T2 - Proceedings 2023 IEEE Sensors N2 - The development of a Lab-on-a-Chip (LoC) is presented, which can detect reactive phosphorous compounds in the gas phase in combination with an optochemical hand-held sensor. The LoC prototype contains three pairs of sensing materials containing fluorescent indicator dyes in various carrier materials. By measuring the fluorescence response to phosphoryl chloride, a surrogate compound, the detection of chemical warfare agents (CWAs) in gas phase becomes possible within seconds, introducing a novel approach to CWA detection. T2 - 2023 IEEE SENSORS Conference CY - Vienna, Austria DA - 29.10.2023 KW - Lab-on-a-Chip KW - Nerve agents KW - Hand-held KW - Fluorescence KW - Toxic industrial chemicals PY - 2023 UR - https://ieeexplore.ieee.org/document/10325263 SN - 979-8-3503-0387-2 DO - https://doi.org/10.1109/SENSORS56945.2023.10325263 SP - 1 EP - 4 PB - IEEE CY - New York AN - OPUS4-59367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sjöberg, T. A1 - El-Schich, Z. A1 - Rurack, Knut A1 - Gjörloff Wingren, A. T1 - Colorectal Cancer Cell Spheroids Co-Cultured with Molecularly Imprinted Fluorescent Particles Targeting Sialic Acid Show Preserved Cell Viability JF - Applied Sciences N2 - In vitro cultured 3D models of CRC have been demonstrated to hold considerable worth in drug discovery, drug resistance analysis, and in studying cell-cell and cell-matrix interactions that occur in the tumor microenvironment. The 3D models resemble the in vivo physiological microenvironment by replicating the cell type composition and tissue architecture. Molecularly imprinted polymers (MIPs) have been investigated for use instead of antibodies against small nonimmunogenic structures, such as sialic acid (SA). Glyco-conjugates including SA are present on all cells, and often deregulated on cancer cells. Here, we present a novel approach for targeting and detecting colorectal cancer cells (CRC) by using in vitro cultured HT29 3D spheroids co-cultured in vitro with either fluorescent MIPs targeting SA, SA-MIPs, or the two lectins targeting SA, MAL I, and SNA. Both formaldehyde-fixed and viable HT29 3D spheroids with or without SA-MIPs were imaged in 3D by confocal microscopy. The results revealed a preserved cell morphology and viability of the HT29 3D spheroids co-cultured in vitro with SA-MIPs. However, the lectins MAL I and SNA targeting the alpha-2,3 or alpha-2,6 SA glycosidic linkages, respectively, affected the cell viability when co-cultured with the viable HT29 3D spheroids, and no living cells could be detected. Here, we have shown that the SA-MIPs could be used as a safe and low-cost diagnostic tool for targeting and detecting cancer cells in a physiologically relevant 3D cancer model in vitro. KW - Molecularly Imprinted Polymers KW - Durchflusszytometrie KW - Zellanalytik KW - Fluoreszenz KW - Mikroskopie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573840 DO - https://doi.org/10.3390/app13095330 VL - 13 IS - 9 SP - 1 EP - 6 PB - MDPI CY - Basel AN - OPUS4-57384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -