TY - JOUR A1 - Chronakis, Michail Ioannis A1 - Mavrakis, E. A1 - Alvarez-Fernandez García, R. A1 - Montes-Bayon, M. A1 - Bettmer, J. A1 - Pitta, P. A1 - Tsapakis, M. A1 - Kalantzi, I. A1 - Tsiola, A. A1 - Pergantis, S. An. T1 - Investigating the behavior of ultratrace levels of nanoparticulate and ionic silver in a seawater mesocosm using single particle inductively coupled plasma – mass spectrometry JF - Chemosphere N2 - Silver nanoparticles (AgNPs) nowadays appear in close to 24% of consumer products that contain engineered nanomaterials. Thus, they are expected to be released into the environment, where their fate and effect are still undetermined. Considering the evidenced efficacy of the single particle Inductively Coupled Plasma – Mass Spectrometry (sp ICP-MS) technique in the study of nanomaterials, this work reports on the use of sp ICP-MS along with an online dilution sample introduction system for the direct analysis of untreated and spiked seawater samples, as part of a larger scale experiment studying the fate of Ag (ionic and nanoparticles) in seawater mesocosm systems. Silver nanoparticles coated with branched polyethyleneimine (BPEI@AgNPs) or ionic silver (Ag+) were introduced gradually into the seawater mesocosm tanks at very low, environmentally relevant concentrations (50 ng Ag L− 1 per day, for 10 consecutive days, up to a total of 500 ng Ag L− 1 ), and samples were collected and analyzed daily, within a consistent time window. Using very low detector dwell time (75 μs) and specialized data treatment, information was obtained on the nanoparticles’ size distribution and particle number concentration, as well as the ionic silver content, of both the AgNPs and the Ag+ treated seawater mesocosm tanks. The results for the AgNP treated samples indicated the rapid degradation of the added silver particles, and the subsequent increase of ionic silver, with recoveries close to 100% for the first days of the experiment. On the other hand, particle formation was observed in the Ag+ treated seawater tanks, and even though the number concentration of silver-containing nanoparticles increased throughout the experiment, the amount of silver per particle remained relatively constant from the early days of the experiment. In addition, the online dilution sample introduction system for the ICP-MS proved capable of handling the untreated seawater matrix without significant contamination issues and downtime, while the low dwell time and data treatment procedure developed were shown to be suitable for the analysis of nanomaterials at the low nm-scale, despite the complex and heavy matrix introduced into the ICP-MS. KW - Mesocosm KW - Single-particle KW - Seawater PY - 2023 DO - https://doi.org/10.1016/j.chemosphere.2023.139109 VL - 336 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-57814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Karbach, H. A1 - Bell, A. M. A1 - Bauer, O. B. A1 - Karst, U. A1 - Meermann, Björn T1 - Determination of metal uptake in single organisms, Corophiumvolutator, via complementary electrothermal vaporization/inductively coupled plasma mass spectrometry and laserablation/inductively coupled plasma mass spectrometry JF - Rapid communications in mass spectrometry N2 - Rationale: (Eco-)toxicological effects are mostly derived empirically and are notcorrelated with metal uptake. Furthermore, if the metal content is determined,mostly bulk analysis of the whole organism population is conducted; thus, biologicalvariability is completely disregarded, and this may lead to misleading results. Toovercome this issue, we compared two different solid sampling techniques for theanalysis of single organisms.Methods: In this study, complementary electrothermal vaporization/inductivelycoupled plasma mass spectrometry (ETV/ICP-MS) , laser ablation/inductivelycoupled plasma mass spectrometry (LA/ICP-MS)-based methods for the analysisof individual organisms were developed and the results obtained were comparedwith the concentrations obtained after digestion and measured using ICP-MS.For this purpose, a common (eco-)toxicological test organism, the mud shrimpCorophium volutator, was selected. As proof-of-concept application, these organismswere incubated with environmentally relevant metals from galvanic anodes, whichare often used for protection against metal corrosion in, for example, offshorewind farms.Results: The bulk analysis revealed that large quantities of the incubated elementswere detectable. Using the ETV/ICP-MS method, we could identify a highbiovariability within the population of organisms tested. Using the LA/ICP-MSmethod, it could be determined that the large quantities of the elements detectedwere due to adsorption of the metals and not due to uptake, which correlates wellwith the absence of (eco-)toxicological effects.Conclusions: The results obtained imply the efficiency of complementary methods toexplain the absence or presence of (eco-)toxicological effects. In particular, methodsthat allow for single-organism analysis or provide even a spatial resolution supportthe interpretation of ecotoxicological findings. KW - ICP-MS KW - Metal toxicity KW - Metal uptake KW - Corophium volutator KW - Seawater PY - 2021 DO - https://doi.org/10.1002/rcm.8953 VL - 35 IS - 2 SP - e8953 AN - OPUS4-52077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, A. M. A1 - von der Au, Marcus A1 - Regnery, J. A1 - Schmid, M. A1 - Meermann, Björn A1 - Reifferscheid, G. A1 - Ternes, T. A1 - Buchinger, S. T1 - Does galvanic cathodic protection by aluminum anodes impact marine organisms? JF - Environmental Sciences Europe N2 - Background: Cathodic protection by sacrifcial anodes composed of aluminum-zinc-indium alloys is often applied to protect ofshore support structures of wind turbines from corrosion. Given the considerable growth of renewable energies and thus ofshore wind farms in Germany over the last decade, increasing levels of aluminum, Indium and zinc are released to the marine environment. Although these metals are ecotoxicologically well-studied, data regarding their impact on marine organisms, especially sediment-dwelling species, as well as possible ecotoxicological efects of galvanic anodes are scarce. To investigate possible ecotoxicological efects to the marine environment, the diatom Phaedactylum tricornutum, the bacterium Aliivibrio fscheri and the amphipod Corophium volutator were exposed to dissolved galvanic anodes and solutions of aluminum and zinc, respectively, in standardized laboratory tests using natural seawater. In addition to acute toxicological efects, the uptake of these elements by C. volutator was investigated. Results: The investigated anode material caused no acute toxicity to the tested bacteria and only weak but signifcant efects on algal growth. In case of the amphipods, the single elements Al and Zn showed signifcant efects only at the highest tested concentrations. Moreover, an accumulation of Al and In was observed in the crustacea species. Conclusions: Overall, the fndings of this study indicated no direct environmental impact on the tested marine organisms by the use of galvanic anodes for cathodic protection. However, the accumulation of metals in, e.g., crustaceans might enhance their trophic transfer within the marine food web. KW - Galvanic anodes KW - Metal toxicity KW - Metal uptake KW - Corophium volutator KW - Seawater PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520769 DO - https://doi.org/10.1186/s12302-020-00441-3 VL - 32 IS - 1 SP - Article number 157 AN - OPUS4-52076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -