TY - JOUR A1 - Taylor, Tristen L. A1 - Tukhmetova, Dariya A1 - Duong, Thi Phuong Thanh A1 - Böwe, Anna-Maria A1 - Meermann, Björn A1 - Gundlach-Graham, Alexander T1 - Comparative study of the vibrating capillary nebulizer (VCN) and commercially available interfaces for on-line coupling of capillary electrophoresis with ICP-MS JF - Analytical and Bioanalytical Chemistry N2 - Capillary electrophoresis (CE) is a powerful and sensitive tool for speciation analysis when combined with inductively coupled plasma mass spectrometry (ICP-MS); however, the performance of this technique can be limited by the nature of pneumatic nebulizers. This study compares two commercially available pneumatic nebulizers to a newly introduced vibrating capillary nebulizer (VCN) for on-line coupling of CE with ICP-MS. The VCN is a low-cost, non-pneumatic nebulizer that is based on the design of capillary vibrating sharp-edge spray ionization. As a piezoelectrically driven nebulization source, the VCN creates an aerosol independent of gas flows and does not produce a low-pressure region at the nebulizer orifice. To compare the systems, we performed replicate analyses of sulfate in river water with each nebulizer and the same CE and ICP-MS instruments and determined the figures of merit of each setup. With the CE-VCN-ICP-MS setup, we achieved around 2–4 times lower sensitivity compared to the commercial setups. However, the VCN-based setup provided lower noise levels and better linear correlation from the analysis of calibration standards, which resulted in indistinguishable LOD and LOQ values from the in-house-built VCN-based and commercial setups for CE-ICP-MS analysis. The VCN is found to have the highest baseline stability with a standard deviation of 3500 cts s−1, corresponding to an RSD of 2.7%. High reproducibility is found with the VCN with a peak area RSD of 4.1% between 3 replicate measurements. KW - Speciation analysis KW - Analytical chemistry KW - Surface water PY - 2024 DO - https://doi.org/10.1007/s00216-024-05162-7 SN - 1618-2650 SP - 1 EP - 9 PB - Springer CY - Berlin AN - OPUS4-59472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Elemental Analysis Methods in Material- & Environmental Analysis N2 - Materials in contact with the environment release e.g., metal-ions, elemental species and/or (nano-)particles. Once these species and/or particles are released, they are ingested by organisms and cells and thus, might have a negative impact on the environment. Thus, identification as well as quantification of potentially harmful substances is of utmost importance and highly needed to assess ecotoxicological impact of (emerging) pollutants. The oral presentation provides an overview on the power of elemental analytical techniques, in particular ICP-MS as well as HR-CS-GFMAS in environmental research. Current research topics from Division 1.1 @ BAM - Inorganic trace analysis will be highlighted: i) Elemental Speciation & Isotope analysis - new tools: Among elemental species separation and quantification, one of the main challenges in environmental elemental speciation analysis is the distinction between anthropogenic and natural elemental species. The on-line combination of elemental speciation and isotope analysis combines “the best from both worlds” - species specific isotopic information becomes available. As an application example the analysis of current anti-fouling agents via CE/MCICP-MS will be highlighted. ii) HR-CS-GFMAS for PFC analysis: Per- and polyfluorinated compounds (PFC) are emerging contaminants in particular in soil and surface water samples. Due to the large number of compounds (>4700), target analytical methods are not sufficient and sum parameter methods for organically bound fluorine are highly needed. High resolution-continuum source-graphite furnace molecular absorption spectroscopy (HR-CS-GFMAS) based methods for organically bound fluorine analysis will be presented. Application examples (soil and surface water) will be highlighted. iii) Single cell-ICP-ToF-MS - ecotox. assessment: Single cell and single organism analysis for e.g. ecotoxicological/medicinal assessment are hot topics in the research field of ICP-MS. In particular ICP-ToF-MS is a powerful, emerging techniques in terms of single cell/particle analysis. Automated single cell/diatom-ICP-ToF-MS as a potential tool in ecotoxicological testing will be presented. T2 - Eingeladener Fachvortrag Kolloquium AG Bleiner - EMPA CY - Online meeting DA - 03.11.2021 KW - HR-CS-GFMAS KW - SC-ICP-ToF-MS KW - Speciation analysis PY - 2021 AN - OPUS4-53707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Faßbender, Sebastian A1 - Rodiouchkina, K. A1 - Vanhaecke, F. A1 - Ley, P. A1 - Metzger, M. A1 - Von der Au, M. A1 - Sturm, M. A1 - Langhammer, N. A1 - Borovinskaya, O. A1 - Büchel, C. A1 - Wichmann, K. A1 - Tremel, W. T1 - New icp-(Tof)-MS based Methods for Material- and Environmental Analysis N2 - Entwicklung von ICP-(ToF)-MS basierten Methoden für die Spezies und Einzelorganismen und -Partikelanalytik an der Schnittstelle Material-Umwelt T2 - Analytisch Chemisches Kolloquium Uni Duisburg-Essen CY - Essen, Germany DA - 04.11.2019 KW - CE-ICP-MS KW - single cell-ICP-ToF-MS KW - single particle-ICP-ToF-MS KW - Speciation analysis PY - 2019 AN - OPUS4-49747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -