TY - JOUR A1 - Liu, H. A1 - Zak, D. A1 - Zableckis, N. A1 - Cossmer, Antje A1 - Langhammer, Nicole A1 - Meermann, Björn A1 - Lennartz, B. T1 - Water pollution risks by smoldering fires in degraded peatlands JF - Science of the Total Environment N2 - Climate change may increase the overall susceptibility of peatlands to fire. Smoldering fires in peatlands can cause substantial emissions of greenhouse gases. It is, however, less clear how smoldering affects the soil pore water quality. In this study, soil samples were collected from agricultural fen and disturbed bog study sites in Germany and Lithuania to quantify the effect of peat burning on pore water composition. The samples were air dried and smoldered under ignition temperature (approximately 200 °C) with different durations (0, 2, 5, and 10 h). Pore water samples were extracted from the soil to determine dissolved organic carbon (DOC) concentrations, dissolved organic matter (DOM) fractions, fluoride, extractable organically bound fluorine (EOF), and sulfate concentrations. The results showed that soil smoldering changes the peat pore water chemistry and that changes differ between fens and bogs. The smoldering duration is likewise influential. For fen grasslands, 2 and 5 h of smoldering of peat caused a >10-fold increase in DOC (up to 1600 mg L−1) and EOF concentrations. The fluoride (up to 60 mg L−1) and sulfate concentrations substantially exceededWHOdrinking water guidelines. In contrast, the temperature treatment decreased theDOC concentrations of samples from raised bogs by 90 %. The fluoride concentrations decreased, but sulfate concentrations increased after smoldering of the bog samples. DOC, fluoride, and sulfate concentrations of bogs varied significantly between the smoldering duration treatments. For all peat samples, the extracted DOMwas dominated by humic-like substances before smoldering, but the fraction of low molecular weight substances increased after smoldering combustion. In conclusion, smoldering alters the biogeochemical processes in both peatland types and possibly impair the water quality of adjacent water resources especially in fen peat landscapes. KW - Smoldering fires KW - Fluoride KW - Peatlands KW - HR-CS-GFMAS KW - Pore water quality PY - 2023 DO - https://doi.org/10.1016/j.scitotenv.2023.161979 SN - 0048-9697 VL - 871 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-56990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -