TY - CONF A1 - Rübner, Katrin T1 - Comparative study of lightweight expanded aggregates made from masonry rubble or clay N2 - Lightweight aggregates can be manufactured from masonry rubble by a thermal expanding process pursuing the idea of feedstock recycling. Throughout a series of research projects, the manufacturing process has been developed, optimized and scaled up. Various test results prove that the engineering properties of the new expanded masonry rubble aggregates are similar to those of traditional expanded clays. The aggregates show a heterogeneous and macroporous pore structure. The grains consist of cracks, cavities, large bulky pores and a solid skeleton containing small capillary pores as well as partly melted areas. But which differences and similarities exist to expanded clay aggregates, which are made from a relatively homogeneous clayey raw material? To answer this question, comparative studies on the chemical, physical, mineralogical and microstructural characteristics of expanded masonry rubble aggregates and commercial expanded clay aggregates have been conducted. In our contribution, results of particle shape and porosity measurements, mercury intrusion porosimetry and electron microscopy are presented. The microstructural characteristics are correlated with engineering properties, such as water absorption and particle strength. T2 - V International Conference Progress of Recycling in the Built Environment CY - Weimar, Germany DA - 10.10.2023 KW - Lightweight aggregates KW - Expanded aggregates KW - Expanded clay KW - Masonry rubble KW - Chemical recycling PY - 2023 AN - OPUS4-64754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abilio, André T1 - Expert System for Screening Microbiologically Influenced Corrosion asInternal Failure Cause in Oil and Gas Upstream Pipelines N2 - The analysis of pipeline failures due to Microbiologically Influenced Corrosion (MIC) is challenging due to the complex interaction of many influencing parameters including pipeline operation conditions, fluid chemistry and microbiology, as well as the analysis of corrosion features and products. To help address this challenge, an expert system was developed to assist non-specialists in screening internal pipeline corrosion failures due to MIC related threats. To accomplish this, 15 MIC subject matter experts (with a total of 355 man-years of accumulated MIC based experience) were recruited to evaluate a total of 65 MIC failure cases based on real-life scenarios. These case study parameters and the expert elicited results were input into an Artificial Neural Network (ANN) model to create a model system which can screen whether a given failure scenario is one of three outcomes: a) failure is likely due to MIC, b) failure is likely not due to MIC, or c) the conclusion is inconclusive (analysis needs more data/information). The model system had an overall accuracy of 74.8%and it showcases that knowledge from subject matter experts can be captured in a reasonably effective way to screen for possible MIC failures. Based on that, this presentation will provide details of the model development process and key results to date. Important considerations regarding the level of confidence of the diagnoses and variation between expert opinion will also be discussed alongside with ideas on how to improve the model for field applicability. T2 - ISMOS 9 CY - Edinburgh, United Kingdom DA - 27.06.2023 KW - Expert System KW - Microbiologically Influenced Corrosion (MIC) KW - Oil and Gas Upstream KW - Artificial neural networks (ANNs) KW - Failure analysis PY - 2023 AN - OPUS4-64602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hothan, Sascha T1 - Durability of Intumescent Coatings - Experimental investigations and test concepts for a working life of more than 10 years N2 - Intumescent coatings are subjected to ageing effects caused by climatic influences. The established European regulations to assess the durability of intumescent coatings are limited to a working life of 10 years. In the presentation experimental investigations and test concepts to extend the working life to 25 years are shown. In addition, a new in-situ testing method to assess the performance of applied intumescent coatings that have undergone ageing processes is presented. T2 - Annual Meeting of ECCS TC3 CY - Online meeting DA - 25.09.2023 KW - Intumescent coatings KW - Experimental investigations KW - In-situ testing PY - 2023 AN - OPUS4-63979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocaño, Patricia A1 - Agudo Jácome, Leonardo T1 - Oxidation Behavior of the AlMo0.5NbTa0.5TiZr Chemically Complex Alloy N2 - The chemically complex alloys that contain mostly refractory elements (rCCAs), may be highly resistant to heat and load, which makes them attractive candidates for use at extremely high temperatures associated with technological applications such as aeroengine turbines. However, the oxidation behavior remains an emerging field within the CCA community. The fully heat treated AlMo0.5NbTa0.5TiZr rCCA contains a dual-phase microstructure that resembles the γ/ γ’ pattern of the well-known Ni-base superalloys, however with a continuous Al-Zr-Ti-rich B2 ordered matrix embedding Mo-Nb-Ta-rach bcc precipitates. The question thus arises what is the oxidation behavior of this rCCA alloy? In this study, this question is addressed via in situ and ex situ X-ray diffraction (XRD) in dry and humid air in the 800–1000 °C regime. Electron microscopic investigations complement the findings. In situ synchrotron experiments were carried out at the KMC2 beamline of the Helmholtz Zentrum Berlin (HZB), with a wavelength of 1.5418 Å at 800 and 950 °C under dry and humid (≈ 40% rH, laboratory air) air for 12 h. Scanning and transmission electron microscopy was performed before and after exposure to spatially resolve the scale development ex situ. In general, 12 h exposure led to an oxide scale which internal oxidation reaches several tens of microns, and which is dominated by Zr-, Ti- and Mo-containing oxides although aluminum oxide was also always present. Main differences are observed between temperatures, while the humidity played a lesser role. T2 - International Conference on High Entropy Materials (ICHEM) 2023 CY - Knoxville, TN, USA DA - 18.06.2023 KW - High entropy superalloy KW - High temperature oxidation KW - In situ synchrotron diffraction KW - Electron microscopy PY - 2023 AN - OPUS4-63857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lehmusto, Juho T1 - The effect of humidity on the initial oxidation of the refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr N2 - Unlike conventional alloys, which typically consist of one main element, high-entropy alloys (HEAs) contain five or more principal elements. When compared with conventional alloys, HEAs may possess desirable properties such as improved strength/hardness, remarkable wear resistance, high structural stability, and notable oxidation resistance. However, due to the numerous possibilities of alloy composition, only a small fraction of HEAs has been characterized in terms of their mechanical and chemical properties. A refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr, with its superalloy-like microstructure, belongs to the first group of a subclass of such Al-containing refractory HEAs that has recently drawn attention. The alloy has a nanoscale microstructure consisting of B2 and bcc phases, enabling high-temperature compressive strengths beyond conventional Ni-based alloys. This feature could improve turbine efficiency in the aerospace and power production industries. However, the microstructure has been reported to be sensitive to heat treatment after which it loses mechanical performance when the intragranular hexagonal Al-Zr-based intermetallic forms. This might be connected with the phase stability in the material. Then again, the addition of Al has been reported to improve the oxidation resistance of the material, but also that HEA materials tend to show pronounced zones of internal aging caused by diffusion during oxidation. These previous results imply that further research on the thermodynamic stability of the alloy is required. Furthermore, the oxidation behavior (both external and internal) and the role of humidity in the process are not fully understood. With such a multi-component material, the grain boundaries are expected to play a key role in the oxidation process, serving as short-circuit pathways for diffusion. To shed more light on the oxidation behavior of the AlMo0.5NbTa0.5TiZr alloy, experiments were carried out for 24 hours at 800 °C under both dry (21% O2 + 79% N2) and humid (8% O2 + 74% N2 + 18% H2O) atmospheres. After the experiments, the samples were characterized with XRD, SEM-EDS, and EPMA. The alloy oxidized rapidly under both studied atmospheres, resulting in a visibly oxidized region with a thickness of around 1.5 microns (dry) and 3.8 microns (humid). The porosity of the oxidized regions differs from one another: a thin layer of pores was detected in the outermost part of the oxidized zone under dry conditions, whereas the pores were distributed throughout the oxidized zone under humid conditions. Furthermore, the presence of humidity affected the phase formation. The grain boundaries, while still recognizable, differed visually from the grains in the as-received material, indicating the active role of grain boundaries during the oxidation. In addition, in the exposed samples, cracks along the grain boundaries were detected. Interestingly, cracks were also located within the grains. This could originate from the diffusion of species from the grains to the grain boundaries, which has changed the composition of grains. As a consequence, cracks formed most likely during cooling due to the Pilling-Bedworth effect. The formation of cracks suggested that the macro-scale homogeneity of the material may change during operation at high temperatures due to the active grain boundaries. T2 - High Temperature Corrosion and Oxidation 2023 Workshop CY - Marktheidenfeld, Germany DA - 25.09.2023 KW - High-Entropy superalloy KW - Oxidation behavior KW - Grain boundaries KW - Microstructure Evolution KW - High-Temperature Performance PY - 2023 AN - OPUS4-63850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - Emissivity Prediction of Rough Cast Iron for Laser Thermography N2 - This study presents a method for predicting the emissivity of rough cast iron surfaces to enhance the accuracy of laser thermography in industrial non-destructive testing (NDT). Traditional emissivity measurements are impractical in industrial settings due to environmental interference and equipment limitations. The proposed approach replaces complex setups like integrating spheres with a simplified illumination unit and reflection measurements. By leveraging known material properties and surface characteristics, an algorithm predicts directional emissivity. Experimental results of an initial feasibility study show strong agreement between predicted and measured values, demonstrating the method’s potential for real-time emissivity correction in industrial thermographic inspections. T2 - Advanced Infrared Technology and Applications (AITA) 2023 CY - Venice, Italy DA - 10.09.2023 KW - Thermography KW - Laser KW - NDT KW - Cast iron PY - 2023 AN - OPUS4-63121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolicea, Alberto T1 - Flexible magnetoresistive sensors for novel electromagnetic testing capabilities N2 - Doctoral seminar showing the results obtained in the first year of research. The initial prototype for the scanning of a flat ferromagnetic sample with flexible magnetic sensors is presented, together with a quick introduction to anisotropic magnetoresistive sensors and their fabrication process. T2 - BAM Doktorandenseminar - Department 8 CY - Berlin, Germany DA - 11.05.2023 KW - Magnetic Sensors KW - Non-destructive Testing KW - Magnetic Flux Leakage Testing KW - Flexible Magnetoresistive Sensors KW - Defect Detection PY - 2023 AN - OPUS4-62682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc T1 - Detection and monitoring of the fatigue crack growth on welds – Application-oriented use of NDT methods N2 - Early detection of fatigue cracks and accurate measurements of the crack growth play an important role in the maintenance and repair strategies of steel structures exposed to cyclic loads during their service life. Observation of welded connections is especially of high relevance due to their higher susceptibility to fatigue damage. The aim of this contribution was to monitor fatigue crack growth in thick welded specimens during fatigue tests as holistically as possible, by implementing multiple NDT methods simultaneously in order to record the crack initiation and propagation until the final fracture. In addition to well-known methods such as strain gauges, thermography, and ultrasound, the crack luminescence method developed at the Bundesanstalt für Materialforschung und -prüfung (BAM), which makes cracks on the surface particularly visible, was also used. For data acquisition, a first data fusion concept was developed and applied in order to synchronize the data of the different methods and to evaluate them to a large extent automatically. The resulting database can ultimately also be used to access, view, and analyze the experimental data for various NDT methods. During the conducted fatigue tests, the simultaneous measurements of the same cracking process enabled a comprehensive comparison of the methods, highlighting their individual strengths and limitations. More importantly, they showed how a synergetic combination of different NDT methods can be beneficial for implementation in large-scale fatigue testing but also in monitoring and inspection programs of in-service structures - such as the support structures of offshore wind turbines. T2 - Fatigue Design 2023 CY - Senlis, France DA - 29.11.2023 KW - Crack growth KW - Fatigue KW - NDT KW - Welded PY - 2023 AN - OPUS4-62374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dalgic, Mete-Sungur T1 - Einfluss der Konformation auf das Ionisationsverhalten in MALDI-TOF MS N2 - MALDI-TOF Massenspektrometrie ist eine wichtige Methode zur Bestimmung von Molekulargewichten von Polymeren. Jedoch wird die quantitative Analyse von Polymeren durch verschiedene Faktoren erschwert. In dieser Präsentation wird unter anderem der Einfluss der molaren Massen auf die Massenspektren näher betrachtet. Dabei werden Konturplots von ternären PMMA- und PS-Mischungen gezeigt. T2 - 27. Kolloquium - Massenspetrometrische von Polymeren CY - Berlin, Germany DA - 09.05.2023 KW - MALDI-TOF MS KW - Ternäre Polymermischungen KW - PMMA und PS PY - 2023 AN - OPUS4-62214 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stolar, Tomislav T1 - Breaking the wall of circular plastics economy N2 - Traditional mechanical recycling cannot process most plastic waste streams and most of the plastic waste currently goes to landfills or incineration. Chemical recycling is a promising technology to mitigate this but is hindered by high costs (due to high process temperatures and production of solvent waste). We developed a cost-efficient technology for chemical recycling of plastic waste that reduces greenhouse gas emissions and minimizes energy consumption. It is based on solvent-free mechanochemistry for depolymerization of plastic polymers at ambient conditions. T2 - 2023 Falling Walls Science Summit CY - Berlin, Germany DA - 07.11.2023 KW - Mechanochemistry KW - Plastic recycling KW - Circular economy PY - 2023 AN - OPUS4-62102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stolar, Tomislav T1 - Breaking the wall of circular plastics economy N2 - Traditional mechanical recycling cannot process most plastic waste streams and most of the plastic waste currently goes to landfills or incineration. Chemical recycling is a promising technology to mitigate this but is hindered by high costs (due to high process temperatures and production of solvent waste). We developed a cost-efficient technology for chemical recycling of plastic waste that reduces greenhouse gas emissions and minimizes energy consumption. It is based on solvent-free mechanochemistry for depolymerization of plastic polymers at ambient conditions. T2 - Falling Walls Lab Berlin-Adlershof CY - Berlin, Germany DA - 21.09.2023 KW - Mechanochemistry KW - Recycling KW - Circular economy PY - 2023 AN - OPUS4-62101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stolar, Tomislav T1 - Thermo mechanochemistry: merging heat and force for discovering new chemical transformations N2 - Mechanochemistry is a hot topic in chemistry, and the number of researchers from academia and industry joining the field is growing. Mechanical action drives chemical reactions forward independently of the solubility of reactants and drastically minimises solvent usage and waste production. Mechanochemistry also provides other advantages, such as faster reaction times, higher yields, altered selectivity, and access to products not obtainable by other methods. Furthermore, recent innovations in mechanochemistry enable conducting chemical reactions by combining force and heat in approach called thermo-mechanochemistry [1]. These conditions typically overcome high activation energies and access products not obtainable by mechanochemistry at ambient temperature conditions. In this talk, I will give an overview to this emerging topic and to our discoveries by thermo-mechanochemistry that include prebiotic peptide bond formation [2], synthesis of amide-based active pharmaceutical ingredient [3], condensation of diamondoid derivatives [4], and manipulation of polymorphic transition temperatures in organic molecular crystals [5]. T2 - Department Seminar at Newcastle University CY - Newcastle, UK DA - 15.09.2023 KW - Mechanochemistry PY - 2023 AN - OPUS4-62104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stolar, Tomislav T1 - Grinding away plastic waste: enabling the circular economy of plastics N2 - Single-use plastics are causing plastic pollution, and less than 10% of plastic waste gets recycled globally. Most of it ends up in landfills or is being incinerated in a highly unsustainable manner. Plastic waste in the environment endangers ecosystems, and microplastics in babies raise alarming health concerns. Hence, one of the global priorities is circular economy for plastics which does not further exploit fossil fuel feedstocks. However, current technologies like mechanical recycling are inadequate, and innovative ones such as chemical recycling, i.e., converting plastics back to the starting monomers, are essential. For example, we can use the recycled monomers to make new plastics in a circular manner or upcycle them to other value-added functional materials. Here, I will present a sustainable technology we developed for the chemical recycling of polyethylene terephthalate (PET). PET represents 10% of global plastic production and dominates in plastic packaging. The technology relies on mechanochemistry (grinding) which uses mechanical action for the chemical breakdown of plastic polymers in an environmentally friendly way. The next step in our research is to use life cycle and techno-economic assessment to validate the sustainability and commercial viability of our technology with the goal of transferring it to real-world industrial application. T2 - Berlin PostDoc Day 2023 CY - Berlin, Germany DA - 02.11.2023 KW - Mechanochemistry KW - Plastic recycling KW - Circular economy PY - 2023 AN - OPUS4-62103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cano Murillo, Natalia T1 - Effect of high-pressure hydrogen environment on the physical and mechanical properties of different kinds of carbon black filled elastomers. N2 - As the transition towards the usage of renewable energy is getting urgent, the fluctuations of clean energy production require efficient storage alternatives. Hydrogen offers not only the possibility of energy storage but also, acts as an energy carrier. It is then important to study the effect of highly pressurized hydrogen atmosphere on the materials destinated for its storage and transport, in order to assure the reliable performance of the sealing materials containing hydrogen. In this study, a set of carbon black (CB) filled rubbers comprising hydrogenated acrylonitrile butadiene rubber (HNBR), acrylonitrile butadiene rubber (NBR) and ethylene propylene diene monomer rubber (EPDM) was tested under high pressure hydrogen atmosphere (1000 bar) and at different temperature conditions: 120°C for HNBR, room temperature and 85°C for NBR and EPDM. The influence of hydrogen on the materials properties was measured after 7 days of exposure under hydrogen and evaluated again after 48h. Density and volume change, as well as hardness, tensile tests, compression set, dynamic mechanical measurements and infrared spectroscopy evaluations were conducted to estimate the impact of high-pressure hydrogen on the rubber grades. Our study reveals, an effect on the physical and mechanical properties, possibly related to small changes in the matrix-filler interaction after the hydrogen exposure. All materials, however, show a trend to recover most of their properties 48h after hydrogen exposure. T2 - RubberCon 2023 CY - Edinburgh, Scotland DA - 09.05.2023 KW - Elastomers KW - Hydrogen exposure KW - Mechanical properties PY - 2023 AN - OPUS4-62007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Appel, Paul Alexander T1 - Developing Tailor-Made Core-Shell Carbon Anode Materials for Sodium Ion Batteries N2 - The current strong interest in electromotive mobility and the need to transition to an energy grid with sustainable energy storage has led to a renewed interest in sodium ion batteries (SIBs). Hard carbons are promising candidates for high-capacity negative electrode materials in SIBs. Their high capacities, however, are often accompanied with high irreversible capacity losses during the initial cycles.[1] The goal of this project is to use analytical techniques to establish a correlation between the structure and the capacities of hard carbons. This has previously been difficult, in part because the sodium storage mechanism is not stoichiometric and due to the disordered structure of hard carbons. Large irreversible capacities associated with hard carbons are often in contradiction to the experimentally determined low surface area of the sample material.[1] A better understanding of the structure-property relationship should enable quantification and understanding of the potential of hard carbon materials for SIBs. Our approach is to explore whether a core-shell structure can separate sodium storage and solid electrolyte interphase formation so that storage capacity and irreversible losses can be investigated separately. The synthesis of a selection of porous carbon structures serving as the core material, will be attempted. Simultaneously, sodium-conducting shell structures will be developed to allow for separation of sodium ions and electrolyte molecules. Subsequently the combination of core and shell materials will be undertaken. These anodes should enable high capacities accompanied with low irreversible capacity due to optimized solid electrolyte interphase formation. T2 - ECS Gothenburg CY - Gothenburg, Sweden DA - 08.10.2023 KW - Energy Materials PY - 2023 AN - OPUS4-62003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwarz, Irina A1 - Rieck, Arielle T1 - Valorization of carbon dioxide by electrocatalytic reduction coupled to acetogens via multiple electron carriers (Ecat-acetogens) N2 - For the realization of a sustainable energy economy, it is of great importance to develop CO2 -neutral methods producing multi-carbon organic chemicals used as feedstock as well as carbon-neutral fuels by CO2 capture and conversion. In this work, a bio-electrocatalytical system (BES) consisting of a bioreactor coupled to a CO2 electrolysis cell is established. CO2 is first electrochemically converted to CO in electrolysis cell which is then directly fed to bacteria (acetogens) to further metabolize it to valuable carbon compounds such as acetate. The objective of this study is to develop cost-efficient, biocompatible and high activity electrocatalysts that can selectively convert CO2 to CO. Porous nitrogen-doped carbons containing atomically dispersed Ni and Co (Ni or Co-N-Cs) are prepared by active-site imprinting approach. First, synthesis of Mg- or Zn-N-C was carried out through pyrolysis of precursors in a salt melt followed by exchange with Ni or Co. N2-sorption porosimetry of the materials reveal a micro-mesoporous structure with high surface areas (> 1000 m2 g-1) and a mass-transport enabling pore system. Extended X-ray absorption fine structure (EXAFS) reveal the existence of single atom sites with no formation of nanoparticles. A variety of Ni-N-Cs and Co-N-Cs were tested for CO2R activity in a rotating disc electrode (RDE) setup, showing high activity (Tafel slopes range from 77 – 130 mV/decade) and selectivity towards CO2R versus the competing HER. Before operation in the BES, first tests were performed in a single cell. Significantly increased current was detected in the CO2R test in CO2-saturated electrolyte vs. in N2 -saturated electrolyte indirectly proving formation of carbon monoxide (CO). Transfer of the electrolysis cell operation into the BES proved to be successful. For biotic operation, the BES was inoculated with Clostridium ragsdalei. Partial pressures pCO reached a maximum of 5.7 mbar and pH2 was 2.7 mbar after 30h. The reduction of partial pressures is interpreted as the consumption of the gases by C.ragsdalei. We report a specific exponential growth rate of 0.16 h-1, acetate formation rate of 1.8 mg L-1 h-1 and an acetate concetration of 0.103 g L-1 corresponding to acetate formation rate of 0.73 mmol d-1.In this work we successfully demonstrated an integrated bio-electrocatalytic system (BES) to convert CO2 into value-added chemicals. The usage of a Co- and Ni-N-Cs as the reduction catalyst within the BES allowed production of CO and H2 with relative selectivity for CO resulting in the growth of Clostridium ragsdalei and acetate production. T2 - Joint SPP Conference CY - Jena, Germany DA - 06.11.2023 KW - Bioelectrocatalytical system PY - 2023 AN - OPUS4-61995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Polymer materials in hydrogen N2 - This presentation provides an overview of the applications and challenges related to polymer materials in hydrogen. The effects of hydrogen on polymers are described and test methods to evaluate the interactions between polymers and hydrogen are presented along with case studies. T2 - Masterstudiengang Wasserstofftechnologien DIU CY - Online meeting DA - 25.08.2023 KW - Hydrogen KW - Polymers PY - 2023 AN - OPUS4-61964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Tribologische Untersuchungen unter GH2 und LH2-Bedingungen N2 - In diesem Beitrag werden Untersuchungen an Polymerwerkstoffen auf ihre Eignung für Reibsysteme in gasförmigem und flüssigem Wasserstoff vorgestellt. Dabei wird der Einfluss der Wasserstoffumgebung in Bezug auf die Materialzusammensetzung diskutiert. Weiterhin zeigen die Experimente in LH2 einen deutlichen Einfluss der Temperatur, der jedoch bei den verschiedenen Polymerverbundwerkstoffen unterschiedlich stark ausgeprägt ist. T2 - DKV Tagung CY - Hannover, Germany DA - 23.11.2023 KW - Polymerwerkstoffe KW - Reibung KW - Verschleiß KW - Gasförmiger Wasserstoff KW - Flüssiger Wasserstoff PY - 2023 AN - OPUS4-61963 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Effect of hydrogen pressure on the fretting behavior of elastomers N2 - In this study, the fretting behavior of several elastomer materials against 316L were evaluated in air and hydrogen environment up to 10 MPa. Furthermore, aging experiments were conducted for 7 days under static conditions in 100 MPa hydrogen and the physical and mechanical properties of the rubber materials were examined before and after hydrogen exposure. Fretting tests revealed that the wear of these compounds is significantly affected by the hydrogen environment compared to air, especially with NBR grades. After aging experiment, the friction response of HNBR grades is characterized by increased adhesion due to elastic deformation, leading to partial slip. T2 - ITC 2023: 9th International Tribology Conference 2023 CY - Fukuoka, Japan DA - 26.09.2023 KW - Hydrogen KW - Fretting KW - Elastomers PY - 2023 AN - OPUS4-61962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Comparative evaluation of the sliding performance of polymers materials in gaseous and liquid hydrogen N2 - The focus of this study is to evaluate the influence of hydrogen on the friction and wear behavior of a wide range of commercially available polymer materials. Thereby, Filled and unfilled polymers from different suppliers were evaluated at room temperature in air and hydrogen gas (H2) as well as in liquid hydrogen at - 253°C (LH2). T2 - 2023 Hydrogenius & I2CNER Tribology Symposium CY - Fukuoka, Japan DA - 03.02.2023 KW - Hydrogen KW - Tribology KW - Cryogenic KW - LH2 KW - Polymers PY - 2023 AN - OPUS4-61961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fellinger, Tim-Patrick T1 - Structure-Performance Relations of PGM-free Electrocatalysts for PEM Fuel Cells N2 - Proton-exchange membrane fuel cells are amongst the most promising energy conversion technologies today. Herein non-precious iron-coordinated nitrogen doped carbons (Fe-N-Cs) as well as metal-free nitrogen-doped carbons (NDCs) are very promising alternatives for Pt-based cathode catalysts. The early reports on the application of such materials date back to the 1960´s when Jasinski demonstrated that - similar to natural porphyrins - N-coordinated transition metal complexes can be active sites for the ORR.1 The preparation of Fe-N-Cs was strongly optimized over the years; still they typically remain with harsh reaction conditions that complicate the selective formation of active FeN4 sites. Until recently, the employment of pyrolytic temperatures was a dogma for the synthesis of FeN4 sites, however coming with unfavorable side reactions. To avoid those harmful side reaction a limit of maximum ≈3 wt.% of Fe (depending on the precursor) was reached, which was also limiting the progress in catalyst performance for this class of materials.2, 3 Since 2006 it was shown that nitrogen doped carbons (NDCs) act as an inexpensive and highly active non-metal catalyst in the oxygen reduction reaction (ORR).4 Both, NDCs and Fe-N-Cs nowadays show the potential to reach performances of practical need, where NDC seem to be promising only for alkaline conditions, while Fe-N-Cs show promise independent of the pH.5, 6 For both PGM-free catalysts, high performance requires advantageous porosity, which typically means high surface area and mass transport pores as well as the control over the chemistry of catalytically active sites. Results and Discussion My group is developing novel synthetic strategies e.g. using molten salts or molten acids as unconventional reaction medium for the preparation of carbons materials.7, 8 Carbon materials with tunable very high surface area of ~2800 m2 g-1 and pore volumes, up to four times as high as in commercial activated carbons, are obtained. Fig. 1: Scheme of the porogenesis mechanism for NDCs by phase separation in of molten salt carbonization (a) to obtain tunable high surface area and porous carbon materials with varying nitrogen content (b). It turned out that such NDCs synthesized in presence of Mg2+ or Zn2+ give rise to a high degree of pyridinic and pyrrolic sites and outstanding ORR activity in alkaline conditions. The salt cations Mg2+ or Zn2+ act as template ions, which results in tetrapyrrolic functional groups embedded into the carbon structure. Based on this, we recently introduced a mild procedure to synthesize Fe-N-C, which leads to active-site formation at low temperatures due to coordination of Fe ions to the tetrapyrrolic functional groups of NDCs.2, 3 Figure 2: Scheme of the Active-Site Imprinting Strategy. A pyrolytic template-ion reaction forms a tetrapyrrolic functional group within the carbon framework (first step). Exchange of the template ion T (with T=Mg2+ or Zn2+) with Fe results in tetrapyrrolic Fe-N-C. The synthesis strategy of active-site imprinting and transmetalation is decoupling the preparation of NDCs from the preparation of the active sites and therefore breaks with the dogma of Fe-N-Cs preparation, circumventing the limitation to 3 wt.% of Fe.9 After a thermal activation step the Fe-N-Cs derived from active site imprinting show very good performance of ORR in acidic conditions, both on the half-cell (rotating disc electrode) and full-cell (5cm2 PEM single cell) level. Figure 3: a) Rotating disk electrode measurements show the large increase in ORR activity and low amount of peroxide formed by exchange of Zn to Fe coordinated to tetrapyrrolic NDC, especially when followed by a second heat treatment. b) Single cell PEMFC H2-O2 tests show a peak power density above 0.4 W cm-2 at a catalyst loading of 2 mg cm-2. Active-site imprinting is currently used by many groups worldwide, successfully pushing the performance of Fe-N-Cs forward, with higher Fe loadings and improved porosities.10-12 Challenges are the moderate turnover frequency (0.24 e- s-1 at 0.8 VRHE) of tetrapyrrolic Fe-N4 sites, 13 and a moderate shelf-life of tetrapyrrolic Fe-N-Cs in atmospheric conditions.14 Besides improvements of electrode engineering and optimization of fuel cell management, an improved synthetic control, leading to more active and stable catalytic environments are needed to tackle the need of sustainable electrocatalysts for future energy conversion technology.15 T2 - International Conference on Materials and Systems for Sustainability (ICMaSS2023) CY - Nagoya, Japan DA - 01.12.2023 KW - PGM-free catalysts PY - 2023 AN - OPUS4-61937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharpmann, Philippa T1 - In-situ Quantification of the Ageing Dynamics in Lithium-Ion Cells up to Failure-Near Conditions N2 - Implementing end-of-life (EOL) lithium-ion batteries from automotive applications in stationary energy storages is of utmost relevance for a sustainable handling of scarce resources. Beneficial from an economic and ecological perspective, such second-life applications urgently require a guarantee for safe operation. Unlike the state of health (SOH), defined by classical performance indicators such as capacity and voltage, the state of safety (SOS) of an aged battery cannot be assessed straightforward. Its determination requires a plethora of cells to be tested which is a particular challenge for new technologies with limited access to EOL batteries. For providing cells with a defined SOH at a reasonable timescale, we herein propose a novel method of greatly accelerating the ageing process of lithium-ion batteries. In a preliminary test series, lithium-ion NMC pouch cells are exposed to incrementally increasing temperatures, current rates and/or states of charge (SOC), until thermal runaway is induced. In this manner, the critical state in proximity to cell failure is spotted for individual and combined stress parameters. Based on this knowledge, cell-specific test parameters for heavily accelerated ageing are developed. In this protocol, electrical abuse conditions are defined by over/under charging and high current rates. Typically, the cells are cycled utilizing a depth of discharge above 100 %. The accelerated aging dynamics under these critical conditions are monitored by systematic capacity, open circuit voltage and electrochemical impedance spectroscopy (EIS) measurements. This enables a comparative assessment of the electrical behaviour, following conventional vs. heavily accelerated ageing. Such knowledge will in turn help to define the threshold to which cyclic ageing can be accelerated without changing the characteristic degradation mechanisms of lithium-ion batteries. T2 - 244th ECS Meeting CY - Gothenburg, Sweden DA - 08.10.2023 KW - Lithium-Ion Battery KW - Safety KW - Ageing PY - 2023 AN - OPUS4-61490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Beyond Chocolate and Apricot Using Scientific Techniques to Determine the Relationship of the Inks of Codex Vaticanus N2 - Codex Vaticanus was written by multiple scribes and annotated by over thirty different hands. In the past, scholars have speculated about the relationship between the inks using highly subjective observations. For example, The scholars spoke about “apricot” and “chocolate” distigmai, arguing for their respective origins based on their visual similarity to the original ink and that of the medieval reinker, respectively. In recent decades, micro X-ray fluorescence (µXRF) has revolutionized the study of ancient and medieval cultural artifacts, making it possible to examine them using objective criteria. The application of such objective scientific measurements to ancient and medieval manuscripts will be explained with examples of how color, hue, and appearance of ink can be highly misleading. T2 - Annual Meeting of the Siciety of Biblical Literature CY - San Antonio, TX, USA DA - 18.11.2023 KW - Codex B KW - Codex Vaticanus KW - Historic ink KW - Micro-XRF PY - 2023 AN - OPUS4-61200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Imaging micro-XRF in studies of manuscripts N2 - Availability of mobile XRF-equipment with an interaction spot of ca. 100 µm produced a revolution in the studies of manuscripts. A protocol for the use of line-scans introduced in the beginning of 2000 permitted large scale and extremely successful investigations of the medieval iron-gall inks. Here, we usually focus on a comparison of the characteristic metallic components in the inks. In our work, we encountered cases that could be adequately addressed only using large area imaging XRF. However, conducting an M6 scan on a bound manuscript or on a scroll of huge dimensions is not a simple and easy matter. In our presentation, we want to share our experience by presenting a series of the case studies, in which many an original solution was found. T2 - M6 JETSTREAM European User Meeting CY - London, GB DA - 03.04.2023 KW - Micro-XRF KW - Manuscripts KW - Imaging PY - 2023 AN - OPUS4-61198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Unveiling the use of writing materials in Carolingian manuscripts N2 - After having been neglected for a long time, materiality is nowadays of great interest in the study of manuscripts. This allows us to explore the variety (and potential coexistence) of different inks and pigments in type and composition in their use over time and geographical area. In this presentation, we aim to contribute to their study through archaeometric analyses of black and red inks used in Carolingian manuscripts copied between the 8th and the 10th centuries. These analyses are based on an interdisciplinary strategy, bringing together knowledge from the humanities and natural sciences to understand the global use of black and red inks in the Carolingian Empire. In this regard, we adopted a non-invasive protocol that included near-infrared imaging and X-ray fluorescence spectroscopy for on-site measurements supported by historical and palaeographic analysis. The results have been collected in the framework of two projects at the University of Hamburg in close collaboration with the Bundesanstalt für Materialforschung und -prüfung, Berlin (BAM) and will be compared with several other archaeometric studies of contemporary manuscripts. T2 - Novel approaches to Digital Codicology CY - Tours, France DA - 10.05.2023 KW - Carolingian manuscripts KW - Historick inks KW - Pigments PY - 2023 AN - OPUS4-61199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalbe, Ute T1 - Reuse and recycling in construction using clay as building material N2 - Clay is increasingly coming back into people's consciousness with the demand for ecological, healthy and sustainable building materials. Earthen building materials, including clay from the historical building stock, offer a high potential for their reusability and thus for saving natural resources. Unfired clay can be reused at any time and indefinitely. Dry clay only needs to be crushed and moistened with water and it can be processed again. However, there exist only a few studies on the contamination with pollutants and on the accumulation of salts in existing historic buildings regarding the evaluation of reuse potential. Within the framework of a project, preliminary tests are being carried out taking into account the previous usage of the buildings. In order to evaluate the suitability for indoor use, the potential transfer of volatile organic compounds into the air is investigated. Fine fractions of C&D waste (particle size less than 2 mm) are currently mostly landfilled. However, such materials can be suitable for substituting primary resources of earthen building materials provided they are adequately processed. Therefore, in another research project it is investigated whether and to what extent fine and ultra-fine fractions of construction and demolition waste processed by washing can be employed for that purpose. The recycled fines are investigated considering organic and inorganic contaminants in solid matter and leaching tests are carried out to assess the potential to mobilize harmful substances. Additionally, the recycled fines are investigated in emission test chambers regarding indoor air requirements to construction products. The results will be transferred to standardization work as in Germany in standards for earthen building materials only aggregates and binders from natural sources are permitted currently. T2 - WASCON 2023 - 11th International Conference on the Environmental and Technical Implications of Construction with Alternative Materials CY - Hongkong DA - 13.12.2023 KW - Earthen building materials KW - Clay KW - Recycled aggregates PY - 2023 AN - OPUS4-61004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kühnel, Alena T1 - Measurement and analysis of concrete pavement surface textures using hand-held 3d laser scanning technology N2 - Concrete pavement surface textures are divided by means of their dimension into four categories: microtexture, macrotexture, megatexture and roughness. They influence the most important performance characteristics of road surfaces, such as friction (also referred to as “skid resistance”), tire/pavement noise, evenness and surface drainage. These properties are relevant for driving safety, comfort and environmental aspects. Up to now, research in Germany has focused on monitoring these characteristics by tire/pavement noise and skid resistance measurements. However, the topography of surface textures has not been sufficiently investigated and evaluated until now. The development and availability of high-performance, hand-held 3D scanning systems during the last years enable measurements of the microtexture and macrotexture of concrete pavement surfaces at short measuring times and high resolution. This paper shows the ability of modern laser-based technology to record three-dimensional data of different concrete pavement surface textures in situ. For this purpose, a special measuring frame has been developed. The presented results were primarily obtained within the framework of a research project commissioned by the German Federal Highway Research Institute (BASt) and processed by the Federal Institute for Materials Research and Testing. Various concrete pavement surface textures by means of diamond grinding and hybrid of diamond grinding and grooving were investigated in situ. In addition, exposed aggregate concretes (EAC), which were introduced as a standard type of concrete for motorway pavements in Germany in 2006, have been analyzed. Based on the gathered 3D data, evaluation routines for qualitative and quantitative analysis have been developed and applied. The aim was to derive the statistical parameters such as the relative and cumulative frequency distribution of the profile depth as well as the roughness coefficient for diamond ground pavements and EAC. Also, the “mean profile depth” (MPD) as a common texture-related parameter was determined. T2 - 14th International Symposium on Concrete Roads CY - Krakow, Poland DA - 25.06.2023 KW - Concrete pavement surface textures KW - 3D laser scanning KW - Diamond grinding KW - Hybrid of diamond grinding and grooving KW - Exposed aggregate concrete surface KW - Surface characteristics KW - Data analysis PY - 2023 AN - OPUS4-60965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Birgit T1 - Wissensbasierte Digitalisierung von betontechnologischen Materialdaten N2 - Die sprunghaft zunehmende Wichtigkeit von FAIR- und Open-Data für die Qualitätssicherung, aber auch für die Nachnutzbarkeit von Daten und den Erkenntnisfortschritt führt zu enormem Flandlungsbedarf in Forschung und Entwicklung. Damit verbunden laufen derzeit vielfältige, ambitionierte Aktionen, z. B. bezüglich der Erstellung von Ontologien und Wissensgraphen. Das Knowhow entwickelt sich rasant, die Ansätze zur Implementation entstehen in verschiedenen Fachwelten bzw. mit unterschiedlichen Zielsetzungen parallel, so dass recht heterogene Herangehensweisen resultieren. Diese Veröffentlichung fokussiert auf Arbeiten, die derzeit als möglichst ganzheitlicher Ansatz für Materialdaten im Rahmen der Digitalisierungsinitiative „Plattform MaterialDigital" vorangetrieben werden. Die Autoren bearbeiten baustoffbezogene Aspekte im Verbundprojekt „LeBeDigital - Lebenszyklus von Beton". Zielsetzung ist die digitale Beschreibung des Materialverhaltens von Beton über den kompletten Herstellungsprozess eines Fertigteils mit einer Integration von Daten und Modellen innerhalb eines Workflows zur probabilistischen Material- und Prozessoptimierung. Es wird über die Vorgehensweise und die dabei gewonnenen Erfahrungen berichtet, nicht ohne den Blick auf die oft unterschätzte Komplexität der Thematik zu lenken. T2 - Ibausil 2023 CY - Weimar, Germany DA - 13.09.2023 KW - Beton KW - Digitalisierung KW - Datenmanagement KW - FAIR-Prinzip KW - Metadaten KW - Ontologie KW - Wissensgraph PY - 2023 AN - OPUS4-60964 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok T1 - High temperature fatigue crack growth in nickel-based alloys joined by brazing and additive manufacturing N2 - Nickel-based alloys have been widely used for gas turbine blades owing to their excellent mechanical properties and corrosion resistance at high temperatures. The operating temperatures of modern gas turbines have been increased in pursuit of increased thermal efficiency. Turbine blades are exposed to these high temperatures combined with mechanical stresses, resulting in material damage through creep, fatigue, and other mechanisms. These turbine blades must be regularly inspected and replaced as needed, to prevent the loss of efficiency, breakdown, and catastrophic failure. Repair of the damaged turbine blades is often a more practical and cost-effective option than replacement, as replacement is associated with high costs and loss of material resources. To this end, state-of-the-art repair technologies including different additive manufacturing and brazing processes are considered to ensure efficient repair and optimum properties of repaired components. In any repaired part, materials property-mismatches and/or inner defects may facilitate the crack initiation and propagation and thus reduce the number of load cycles to failure. Therefore, a fundamental understanding of the fatigue crack growth and fracture mechanisms in joining zones is required to enable the prediction of the remaining life of repaired components and to further improve and adapt the repair technologies. Fatigue crack growth experiments have been conducted on SEN (Single Edge Notch) specimens joined via brazing, and pre-sintered Preform (PSP) and multi-materials (casted/printed) specimens layered via additive manufacturing (AM). The experiments were performed at 950 °C and various stress ratios. The crack growth was measured using DCPD (Direct Current Potential Drop) method. The stress intensity factors for joined SEN specimens were calculated using the finite element method and then used to derive the fatigue crack growth curves. Metallographic and fractographic analyses were conducted to get insight into the fracture mechanism. Results show that the experimental technique for fatigue crack growth was successfully adapted and applied for testing joined specimens. Furthermore, the initial tests indicate that the investigated braze filler material provides a lower resistance to crack growth, and bonding defects cause a crack to deviate to the interface of the base material and joining zone. In AM-sandwich specimens, the crack growth rates are significantly reduced when the crack reaches the interface of printed material and casted material. The obtained crack growth data can be used to calibrate a crack growth model, which will further be utilized to predict the remaining life of repaired components. T2 - DGM Arbeitskreis Mechanisches Werkstoffverhalten bei hoher Temperatur im FachausschussWerkstoffverhalten unter mechanischer Beanspruchung CY - Munich, Germany DA - 10.10.2023 KW - Fatigue crack growth KW - Joined nickel-based alloys PY - 2023 AN - OPUS4-60908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leidenbach, Thomas A1 - Löwe, Katharina T1 - Development of a new method for the selection of indicators for improvement of industrial sustainability in the process industry N2 - Many organisations are being driven towards employing sustainable practices to counteract the growing concerns of environmental and social issues. With various stakeholders including governments, suppliers and customers putting on pressure the process industry is no exception. However, many industrial firms struggle to implement sustainability measures. One of the usual first steps when conducting implementation is to analyse the current situation. For this analysis, indicators are commonly used to measure, monitor, and report a company’s sustainable development performance. However, the selection of appropriate indicators is often challenging due to the current lack of relevant methodologies, guidelines, and insights into a practitioner perspective. To address this challenge, this work focuses on the creation of a user-orientated method, which helps practitioners in the process industry to select relevant indicators for their plant and assist in the deduction of sustainability measures. This includes addressing the difficulties of implementation and regarding the current needs like the inclusion of indicators for reporting or the quantification of gathered metrics. T2 - 14th European Congress of Chemical Engineering and 7th European Congress of Applied Biotechnology 2023 CY - Berlin, Germany DA - 17.09.2023 KW - Process industry KW - Sustainability PY - 2023 AN - OPUS4-60869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. T1 - From advanced simulation models to industrial applications N2 - The integration of advanced simulation models into industrial applications, especially in civil engineering, is a challenge that requires to develop new concepts. In particular, this is related to the validation of models using open access and FAIR data as well as objective methods for identifying model parameters and model comparison with the integration of both the models and their calibration into reproducible workflow systems. The challenges are illustratively discussed for a variety of applications ranging from bridge monitoring over the structural behavior under blast loading up to the additive manufacturing of concrete. An important basis for model validation is the existence of machine-readable data structures for experimental data, e.g. based on semantic representations. In addition, platforms to share this structured data in a searchable format in addition with reproducible scientific workflows must be established. Based on these tools, objective methods for model parameter estimation and validation of the models are a critical step in ensuring their accuracy and usefulness in industrial applications. Bayesian inference is one approach that can be used to optimize simulation parameters, improving the accuracy of the model while being able to estimate the uncertainty. Integrating these procedures in a real-time application with a bidirectional information exchange between the physical systems and the virtual simulation model leads to the concept of digital twins. For complex simulation models, the computational efficiency is a significant barrier both for real-time applications and in the context of model calibration with potentially millions of required forward-model evaluations. As a consequence, reduced order modeling approaches such as the proper generalized decomposition method can be used to build an efficient to evaluate model - speeding up the online computation but requiring a precomputation in an offline phase. Finally, a perspective for integrating material and structural design into a joint design optimization is given. The integration of advanced simulation models into industrial applications is a rapidly evolving field with significant potential for innovation and progress. From additive manufacturing of concrete to digital twins and reduced order modeling, there are many tools and approaches that can be used to improve industrial processes and drive progress in a variety of industries. T2 - Kolloquium des MUSEN-Zentrums Braunschweig CY - Braunschweig, Germany DA - 04.05.2023 KW - Digital twins KW - Reduced order models PY - 2023 AN - OPUS4-60842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Probing internal damage in glassy metals N2 - This talk covers strain localization in metallic glasses and how it can be probed non-destructively using acoustic emission and x-ray methods. The results are compared to other methods and contextualized in the context of shear-band dynamics during inhomogeneous flow of metallic glasses. T2 - Seminar Zerstörungsfreie Prüfung TU München 2023 CY - Online meeting DA - 29.06.2023 KW - Metallic glass KW - Deformation KW - Acoustic emission PY - 2023 AN - OPUS4-60718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - On an experimentalist's hard search for free volume N2 - This talk was given in honor of Prof. Frans Spaepen, faculty at Harvard University, at the occasion of his Staudinger Lecture and his honorary doctorate degree reception at ETH Zurich. It covers a 10 year long journey of how an experimentalist probes free-volume effects in metallic glasses. T2 - Symposium in honor of Frans Spaepen Honorary Doctorate ETH Zurich CY - Zurich, Switzerland DA - 08.12.2023 KW - Metallic glass KW - Deformation KW - Shear bands PY - 2023 AN - OPUS4-60717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Cluster dynamics and anomalous transport in metallic glasses N2 - Quenching a metallic liquid sufficiently fast can give rise to an amorphous solid, typically referred to as a metallic glass. This out-of-equilibrium material has a long suite of remarkable mechanical and physical properties but suffers from property deterioration via structural relaxation. As a function of time, relaxation may indeed constitute significant threads to safe applications. Consequently, relaxation of glasses has a long history across different amorphous materials and typical characterization methods promote a picture of gradually evolving and smooth relaxation, as for example obtained from mechanical spectroscopy. However, the true structural dynamics and underlying mechanisms remain far from understood and have hampered a physically informed atomic-scale picture of transport and physical aging of glasses. Here we exploit the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS) and resolve an unprecedented spectrum of short- and long-term relaxation time scales in metallic glasses. Conducted across temperatures and under the application of stress, the results reveal anything else than smooth aging and gradual energy minimization. In fact, temporal fluctuations persist throughout isothermal conditions over several hundred thousand of seconds, demonstrating heterogeneous dynamics at the atomic scale. In concert with microsecond molecular dynamic simulations, we identify possible mechanisms of correlated atomic-scale dynamics that can underly the temporal fluctuations and structural decorrelations. Despite temporally heterogeneous, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law emerges. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the structural fast and slow relaxation modes as well as a true microstructure in metallic glasses. T2 - Department Seminar OSU 2023 CY - Columbus, OH, USA DA - 22.09.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass N2 - Inspired by the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS)1 and recent results of long-term atomistic simulations on material transport2, we reveal here an unprecedented spectrum of short- and long-term relaxation dynamics. Tracked along a 300 000 s long isotherm at 0.98Tg, a Zr-based bulk metallic glass exhibits temporal fluctuations that persist throughout the entire isotherm, demonstrating a continuous heterogeneous dynamics at the probed length scale. In concert with microsecond molecular dynamic simulations, we identify intermittent cluster dynamics as the origin for temporal signatures in the corresponding intensity cross-correlations. Despite temporally heterogeneous aging, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law better describes the data. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the underlying structural fast and slow relaxation modes and their manifestation in the temporal form of the structural decorrelations. T2 - 9th IDMRCS CY - Chiba, Japan DA - 12.08.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Elastic Microstructures in Metallic Glasses N2 - Metallic glasses (MGs) are disordered solids that exhibit a range of outstanding mechanical, thermomechanical, and functional properties. Whilst being a promising class of structural materials, well-defined and exploitable structure-property relationships are still lacking. This offsets them strongly from the crystalline counterparts, for which length-scale based property determination has been key for decades. In recent years, both atomistic simulations and experiments have nurtured the view of heterogeneities that manifest themselves either as a structural partitioning into well-relaxed percolated network components and more frustrated domains in atomistic simulations, or as spatially-resolved property fluctuations revealed with atomic force microscopy. These signatures depend sensitively on the processing history and likely reflect emerging medium-range order fluctuations at the scale of 1-10 nanometers. Here we demonstrate and discuss the emergence of spatially resolved property fluctuations at length scales that are one to two orders of magnitude larger. Such long-range decorrelation length scales are hard to reconcile in a monolithic glass but may offer the perspective of experimentally easy-to-access length-scale based structure-property relationships. Whilst long-range property fluctuations can be seen in both the plastic and elastic response, we focus here on high-throughput elastic nanoindentation mapping across the surface of a Zr-based model glass. After a deconvolution of surface topography and curvature effects, the spatially-resolved elastic response reveals an elastic microstructure with a correlation length of ca. 150-170 nm. Analytical scanning-transmission electron microscopy (STEM) is used to link the elastic property fluctuations to the chemistry and structure of the MG. In concert, nano-elastic mapping and STEM suggests that structural variations in the glass are responsible for the unexpectedly large length scales. We discuss these findings in terms of the materials processing history and the perspective of exploiting nanoindentation-based spatial mapping to uncover structural length scales in atomically disordered solids. T2 - 7th International Indentation Workshop – IIW7 CY - Hyderabad, India DA - 17.12.2023 KW - Metallic glass KW - Nanoindentation KW - Microstructure PY - 2023 AN - OPUS4-60692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Diegeler, A. T1 - Digital material data based glass screening for the systematic development of new glasses N2 - Current German developments for accelerated glass development is presented to an international audience at GOMD 2023. The focus is on a screening device which is embedded in a digital infrastructure. T2 - GOMD CY - New Orleans, LA, USA DA - 04.06.2023 KW - Glass KW - Robotic melting PY - 2023 AN - OPUS4-60376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - On an unusual career path and unusual transport in metallic glasses N2 - Planning an academic career is a bit like enjoying a box of chocolate – you never know what you are going to get next. In this talk, I will begin with sharing how luck, difficult decisions, fate, and family constraints affected my career path across continents, universities, the private sector, and to becoming a director at a national laboratory. This journey was certainly not planned and highlights how opportunities and compromises together allow you to make much more out of your engineering degree than you ever have dreamed of. After this unusual journey as a materials scientist, I am transitioning to the technical part of my talk, where we will discuss transport in metallic glasses. This out-of-equilibrium material has a long suite of remarkable mechanical and physical properties but suffers from property deterioration via physical aging. As a function of time, relaxation may indeed constitute significant threads to safe applications, such as a complete loss of toughness. In the search for a physical understanding of aging, we exploit here the ability to track atomic-scale dynamics with coherent x-ray scattering. Conducted across temperatures and under the application of stress, the results reveal unexpected transport. In concert with microsecond molecular dynamic simulations, we identify possible mechanisms of atomic-scale dynamics that underly physical aging of metallic glasses. We find that classical Kohlrausch-Williams-Watts behavior is only suited for the short relaxation-time regime, whereas anomalous diffusion emerges at practically relevant times. We discuss these results in terms of the structural relaxation modes and propose a picture of a true microstructure in metallic glasses. T2 - Department Seminar IIT Delhi 2023 CY - Delhi, India DA - 15.12.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Transitions from scale-free to scale-dependent fluctuations in plasticity N2 - Plastic deformation in crystals is mediated by the motion of line defects known as dislocations. For decades, dislocation activity has been treated as a homogeneous, smooth continuous process that relies on well-average quantities. However, it is now recognized that plasticity can be determined by long-range correlated and intermittent collective dislocation activity, known as avalanches. These abrupt plastic fluctuations often exhibit pure power-law scaling or truncated power-law scaling, which indicates at least some degree of scale-free dislocation behavior. Intriguingly, such statistical signatures can persist across scales exceeding those of the material’s microstructure, raising the question of what relationship there may be between structure and long-range correlated dislocation activity that underlie power-law scaling. In this talk, we address this question by highlighting examples in which a transition from scale-free to scale-dependent plastic deformation is observed either due to changing external testing conditions (stress-state or temperature) or by tuning the microstructure. In particular, we will focus on the details of the temperature-driven change, that demonstrates how scale-free intermittent flow in body-centered cubic Nb is progressively quenched out with decreasing temperature. The plastic response of Nb is shown to be bimodal across the studied temperature regime, with conventional thermally-activated smooth plastic flow coexisting with sporadic bursts controlled by athermal screw dislocation activity, thereby violating the classical notion of temperature-dependent screw dislocation motion at low temperatures. An abrupt increase of the athermal avalanche component is identified at the critical temperature of the material. We combine the experimental observations with 3D dislocation dynamics simulations, identify a possible origin to athermal screw activity, and discuss the co-existence scale-free and scale-dependent plasticity. T2 - Cairo Symposium on The Physics of Metal Plasticity CY - Cairo, Egypt DA - 05.09.2023 KW - Plastic deformation KW - Dislocations KW - Avalanches PY - 2023 AN - OPUS4-60648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Liquid Metal Embrittlement in High-Strength Steels N2 - One contribution of materials science to energy efficiency is the continuous development of novel high-performance structural materials that push the strength-ductility envelope. A prominent example are modern advanced high-strength steels (AHSSs), which have enabled considerable weight reductions in the automotive sector, thereby enabling greenhouse emission reductions. To protect such advanced alloys from property degradation via corrosion, zinc (Zn) coatings are often applied through galvanization. Whilst protective, a Zn-coating comes with problems – the AHSS substrate becomes susceptible for liquid-metal embrittlement (LME) than can be the origin of significant mechanical property degradation when liquified Zn infiltrates into the steel substrate. Being for from understood, we focus here on non-cracked environments to capture the early stages of LME. This approach revealed the nucleation and growth of nano-scale intermetallic phases inside uncracked GBs (Materials Today Advances 13, 100196, 2022), highlighting the complex multi-phase microstructure developing before cracking occurs. To shed further light on the early stages of LME in AHSSs, we also consider the microstructural evolution of interrupted welds. We discuss our findings in the context of the time-resolved substructure evolution right beneath the interface between the AHSS and the Zn-based coating and track how Zn progressively infiltrates the substrate along phase and grain boundaries. The experimental results are further corroborated with thermodynamic simulations. T2 - ASATM CY - Singapore DA - 10.01.2023 KW - Liquid-metal embrittlement KW - Steels KW - Grain boundaries KW - Micro-cracking PY - 2023 AN - OPUS4-60647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Verkehrsrechtliche Betrachtungen Transport- und Lagerbehälter - Wo geht die Reise hin? N2 - Transportierbarkeit von Transport- und Lagerbehältern für radioaktive Stoffe, welche nach eine längerfristigen trockenen Zwischenlagerung transportiert werden müssen. Überblick über die aktuellen Regelwerke und Richtlinien sowie die Zeitpläne für das Finden eines Endlagers für hochradioaktive Stoffe und die damit verbundene verlängerte Zwischenlagerung. Des Weiteren werden das für die verlängerte Zwischenlagerung notwendige Alterungsmanagement und die noch erforderlichen Forschungstätigkeiten vorgestellt. T2 - 10. Symposium Lagerung und Transport radioaktiver Stoffe CY - Hannover, Germany DA - 05.09.2023 KW - Transportbehälter KW - Radioaktive Stoffe KW - Transport KW - Zwischenlagerung KW - IAEA PY - 2023 AN - OPUS4-60506 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher T1 - Wärmestrahlung von Freistrahlflammen N2 - Wasserstoff als Energieträger gewinnt zunehmend an Bedeutung. Die Untersuchung von Störfallauswirkungen mit Wasserstoff rückt somit stärker in den Fokus. Da Wasserstoff meist unter Druck gelagert und transportiert wird, ist ein zu betrachtendes Szenario die Freisetzung aus einer Leckage mit anschließender Zündung. Die daraus resultierende Freistrahlflamme (Jet Flame) muss hinsichtlich der in die Umgebung emittierten Wärmestrahlung charakterisiert werden. In der Literatur existieren bereits verschiedene Modelle ([1], [2]), welche jedoch vermehrt auf Daten aus Kohlenwasserstoffflammen mit geringem Impuls basieren. Zur Überprüfung dieser Modelle wird im Zuge des BAM internen H2 Jet Flame Projektes die sicherheitstechnische Untersuchung von impulsbehafteten Wasserstoff Freistrahlflammen vorgenommen. Hierfür finden Versuche im Realmaßstab auf dem Testgelände Technische Sicherheit der BAM (BAM-TTS) statt. Gegenstand der Untersuchungen ist die Beurteilung der Auswirkungen von realistischen Freisetzungsszenarien hinsichtlich der Flammengeometrie und der freigesetzten Wärmestrahlung. Dabei werden Parameter wie Freisetzungswinkel, Leckagedurchmesser (z.Zt. 1 mm bis 10 mm), Druck (z.Zt. bis max. 250 bar) und Massenstrom (bis max. 0,5 kg/s) variiert. Zusätzlich können auch Einflüsse wie Art der Zündung, Zündort sowie Zündung mit zeitlichem Verzug untersucht werden. Gewonnene Erkenntnisse werden mit den Ergebnissen bereits vorhandener Modelle verglichen und diese im Bedarfsfall weiterentwickelt. Insbesondere wird der Fokus auf die Modellierung der freigesetzten Wärmestrahlung von Wasserstoffflammen gelegt. Herausforderung dabei stellt die IR-Vermessung und Modellierung von Sichtmodellen der Flammen dar. Die Visualisierung der Flammengeometrie wird mit Hilfe mehrerer Infrarot Kamerasystemen (aus mindestens zwei Blickwinkeln) vorgenommen. Bisherige Messungen, die in der Literatur zu finden sind, basieren meist auf instationären Auströmbedingungen. Der hier verwendete Versuchsaufbau ermöglicht ein stationäres Ausströmen für mehrere Minuten und somit eine direkte Vergleichbarkeit mit den existierenden (stationären) Modellen. Weiterhin ist der Versuchsstand umrüstbar für Vergleichsmessungen mit Kohlenwasserstoffen (Methan etc.) sowie Mischungen aus Wasserstoff und Kohlenwasserstoffen. T2 - DECHEMA - Fachgruppe Auswirkungen von Stoff- und Energiefreisetzungen CY - Online meeting DA - 08.11.2023 KW - Freistrahlflamme KW - Wärmestrahlung KW - Wasserstoff KW - Methan PY - 2023 AN - OPUS4-60513 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Breaking the Wall of Rapid Diagnostics N2 - In this short presentation the diagnostics, biomarkers and analysis are interrelated. The specificity and sensitivity of the DNA structures as well as the high-throughput option of the nanopore sensing are discussed. T2 - Falling Walls Lab Berlin-Adlershof CY - Berlin, Germany DA - 21.09.2023 KW - Nanopipettes KW - Sensing KW - Diagnosis KW - DNA structures PY - 2023 AN - OPUS4-60450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Modeling in support of offshore wind farm end-of-life decision making N2 - The EU member states have set out ambitious long-term goals for deploying offshore wind energy. The installed offshore wind capacity is set to increase from 14.6 GW in 2021 to around 320 GW in 2050. This signifies the role of offshore wind energy as a major contributor to reaching the EU’s climate and energy goals. To ensure that the defined targets are met, a significant number of new wind farms has to be installed and existing wind farms reaching the end of their planned life need to be reused efficiently. Some of the relevant reuse alternatives are lifetime extension, repowering based on the existing support structures and repowering with new turbines. As a basis of the decision-making regarding the reuse of existing offshore wind farm, the expected utility of each relevant option should be determined based on the associated expected rewards, costs and risks. The optimal concept maximizes the utility of the decision-maker and fulfills the existing constraints and requirements. To facilitate such a quantitative decision-making, models and methods have to be developed. In particular, models are required that enable predictions of (a) the condition and performance of the turbines and support structures and (b) the renumeration, costs and consequences of adverse events. These predictions have to consider (a) the governing uncertainties, (b) the available information from the planning, construction, installation and operating phase, (b) potential repair, retrofitting and strengthening schemes and (c) possible monitoring, inspection and maintenance regimes for the future operating phase. Over the past years, several models, methods and tools have been developed at the Bundesanstalt für Materialforschung und -prüfung (BAM) to support the structural integrity management of offshore wind turbine substructures. These include: (a) a prototype for reliability-based, system-wide, adaptive planning of inspections of welded steel structures in offshore wind farms, (b) a method for monitoring and risk-informed optimization of inspection and maintenance strategies for jacket structures subject to fatigue, and (c) a probabilistic cost model of inspection and maintenance of welded steel structures in offshore wind farms. This contribution provides an overview on these works and discusses how they can be adapted and extended to support the decision-making regarding lifetime extensions and repowering of offshore wind farms. T2 - 12th International Forum on Engineering Decision Making (12th IFED) CY - Stoos, Switzerland DA - 05.12.2023 KW - Windenergie KW - Offshore Wind KW - Lifetime Extension KW - Repowering PY - 2023 AN - OPUS4-60430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - GlassDigital: Digital Infrastructure for Data-Driven High-Throughput Glass Development N2 - Gläser zeichnen sich durch eine breite und kontinuierlich abstimmbare chemische Zusammensetzung sowie einzigartige Formgebungstechniken aus, was sie oft zur Schlüsselkomponente moderner Hochtechnologien macht. Die Glasentwicklung ist jedoch oft noch zu kosten-, zeit- und energieintensiv. Der Einsatz von robotergestützten Schmelzsystemen, eingebettet in eine Ontologie-basierte digitale Umgebung, soll diese Probleme in Zukunft überwinden. Im Rahmen der BMBF Forschungsinitiative MaterialDigital unternimmt das Verbundprojekt GlasDigital „Datengetriebener Workflow für die beschleunigte Entwicklung von Glas“ erste Schritte in diese Richtung. Das Projektkonsortium, an dem das Fraunhofer ISC in Würzburg, die Friedrich-Schiller-Universität Jena (OSIM), die Technische Universität Clausthal (INW) und die Bundesanstalt für Materialforschung und -prüfung (BAM, Fachgruppe Glas) beteiligt sind, will alle wesentlichen Basiskomponenten für eine beschleunigte datengetriebene Glasentwicklung zusammenführen. Zu diesem Zweck wird ein robotergestütztes Hochdurchsatz-Glasschmelzsystem mit neuartigen Inline-Sensoren zur Prozessüberwachung, auf maschinellem Lernen (ML) basierenden adaptiven Algorithmen zur Prozessüberwachung und -optimierung, neuartigen Werkzeugen für die Hochdurchsatz-Glasanalyse sowie ML-basierten Algorithmen zum Glasdesign, Data Mining sowie Eigenschafts- und Prozessmodellierung ausgestattet. Der Vortrag gibt einen Überblick darüber, wie all diese Komponenten miteinander verzahnt sind, und veranschaulicht ihre Nutzbarkeit anhand einiger Beispiele. T2 - HVG-Fortbildungskurs CY - Offenbach, Germany DA - 27.11.2023 KW - Glas KW - Ontology KW - Workflow KW - Simulation KW - Robotic melting PY - 2023 AN - OPUS4-60386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - GlasDigital: Data-driven workflow for accelerated glass development N2 - lasses stand out by their wide and continuously tunable chemical composition and large variety of unique shaping techniques making them a key component of modern high technologies. Glass development, however, is still often too cost-, time- and energy-intensive. The use of robotic melting systems embedded in an ontology-based digital environment is intended to overcome these problems in future. As part of the German research initiative MaterialDigital, the joint project GlasDigital takes first steps in this direction. The project consortium involves the Fraunhofer ISC in Würzburg, the Friedrich Schiller University Jena (OSIM), the Clausthal University of Technology (INW), and the Federal Institute for Materials Research and Testing (BAM, Division Glasses) and aims to combine all main basic components required for accelerated data driven glass development. For this purpose, a robotic high throughput glass melting system is equipped with novel inline sensors for process monitoring, machine learning (ML)-based, adaptive algorithms for process monitoring and optimization, novel tools for high throughput glass analysis and ML-based algorithms for glass design, including software tools for data mining as well as property and process modelling. The talk gives an overview how all these tools are interconnected and illustrates their usability with some examples. T2 - HVG-DGG Fachausschuss I CY - Jena, Germany DA - 03.11.2023 KW - Glass KW - Robotic melting KW - Ontologie KW - Simulation KW - Workflow KW - Data Space PY - 2023 AN - OPUS4-60383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina T1 - GlasDigital N2 - Der aktuelle Stand (Sep 2023) des Projekts GlasDigital wird präsentiert. Der Fokus liegt hierbei auf einer knappen Übersicht, aus der die nachhaltigen Beiträge für die Innovationsplattform MaterialDigital hervorgehen. T2 - PMD Vollversammlung CY - Karlsruhe, Germany DA - 21.09.2023 KW - Glas KW - Robotische Schmelzanlage KW - Ontologie KW - Simulation PY - 2023 AN - OPUS4-60377 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Optical properties of dental ceramics: Characterization via UV-Vis and photoluminescence spectroscopies N2 - When it comes to dental treatments, success is not only measured by attained functionality but, to a large extent, the associated aesthetics. This can become challenging for certain restorations and implants due to the complex optical characteristic of a tooth, which reflects, absorbs, diffuses, transmits, and even emits light. Thus, to get acceptable aesthetic results, favourable shade matching of ceramic restorations and implants should be achieved by strict control of optical response, which translates into a materials design question. Optical response is affected by several factors such as the composition, crystalline content, porosity, additives, grain size and the angle of incidence of light on the dental ceramics. The properties to be characterized are colour (and its stability), translucency, opalescence, refractive index, and fluorescence. Several techniques can be applied for the characterization of these properties and in this presentation, an overview will be given. Moreover, particular emphasis will be given on the capacitation of less familiarized public to UV-Vis absorption and photoluminescence (PLE) spectroscopies that are versatile and widely employed for functional and structural characterization of glasses and glass ceramic materials. T2 - 2nd BAYLAT Workshop of CERTEV - FAU CY - Nuremberg, Germany DA - 04.12.2023 KW - Optical properties KW - Dental ceramics KW - Optical spectroscopy PY - 2023 AN - OPUS4-60364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, P. T1 - The contribution of the Platform MaterialDigital (PMD) in building up a Materials Data Space - Application to glass design and manufacturing N2 - Suitable material solutions are of key importance in designing and producing components for engineering systems – either for functional or structural applications. Materials data are generated, transferred, and introduced at each step along the complete life cycle of a component. A reliable materials data space is therefore crucial in the digital transformation of an industrial branch. A great challenge in establishing a materials data space lies in the complexity and diversity of materials science and engineering. It must be able to handle data from different knowledge areas over several magnitudes of length scale. The Platform MaterialDigital (PMD) is expected to network a large number of repositories of materials data, allowing the direct contact of different stakeholders as materials producers, testing labs, designers and end users. Following the FAIR principles, it will promote the semantic interoperability across the frontiers of materials classes. In the frame of a large joint initiative, PMD works intensively together with currently near 20 research consortia in promoting this exchange (www.material-digital.de). In this presentation we will describe the status of our Platform MaterialDigital. We will also present in more detail the activities of GlasDigital, one of the joint projects mentioned above dealing with the digitalization of glass design and manufacturing. (https://www.bam.de/Content/EN/Projects/GlasDigital/glasdigital.html) T2 - OntoCommons Workshop CY - Berlin, Germany DA - 04.04.2023 KW - Ontology KW - Materials Data Space KW - PMD KW - Glass PY - 2023 AN - OPUS4-60371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kilo, M. T1 - New Approaches for the Preparation and Characterisation of New Glasses N2 - The new robot-assisted glass melting device at BAM is presented by the manufacturing team within the joint project GlasDigital together with an automatic thermo-optical measurement technique. T2 - USTV-DGG joint meeting CY - Orleans, France DA - 22.05.2023 KW - Glass KW - Robotic melting PY - 2023 AN - OPUS4-60374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -