TY - JOUR A1 - Müllner, S. A1 - Held, T. A1 - Tichter, Tim A1 - Rank, P. A1 - Leykam, D. A1 - Jiang, W. A1 - Lunkenbein, T. A1 - Gerdes, T. A1 - Roth, C. T1 - Impact of Functional Groups in Reduced Graphene Oxide Matrices for High Energy Anodes in Lithium-Ion Batteries N2 - Most high capacity anode materials for lithium-ion batteries (LiB) require a carbonaceous matrix. In this context one promising material is reduced graphene oxide (rGO). Herein, we present the influence of different reduction degrees of rGO on its physico-chemical properties, such as crystallinity, specific surface area, electrical conductivity and electrochemical lithiation/delithiation behavior. It is found that a heat treatment under inert and reducing atmospheres increases the long-range order of rGO up to a temperature of 700 °C. At temperatures around 1000 °C, the crystallinity decreases. With decreasing oxygen content, a linear decrease in irreversible capacity during cycle 1 can be observed, along with a significant increase in electrical conductivity. This decrease in irreversible capacity can be observed despite an increase in specific surface area indicating the more significant influence of the oxygen content on the capacity loss. Consequently, the reversible capacity increases continuously up to a carbon content of 84.4 at% due to the thermal reduction. Contrary to expectations, the capacity decreases with further reduction. This can be explained by the loss of functional groups that will be lithiated reversibly, and a simultaneous reduction of long-range order, as concluded from dq/dU analysis in combination with XRD analysis. KW - Batteries KW - Functional Materials KW - Graphene Oxide PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606852 DO - https://doi.org/10.1149/1945-7111/ace70a SN - 0013-4651 VL - 170 IS - 7 SP - 1 EP - 12 PB - The Electrochemical Society AN - OPUS4-60685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Wachsmuth, T. A1 - Bhosale, M. A1 - Burmeister, D. A1 - Smales, Glen Jacob A1 - Schmidt, M. A1 - Kochovski, Z. A1 - Grabicki, N. A1 - Wessling, R. A1 - List-Kratochvil, E. J. W. A1 - Esser, B. A1 - Dumele, O. T1 - Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes N2 - Despite their inherent instability, 4n π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO−LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.g., due to solubility in the battery electrolyte solution or low internal surface area). Covalent organic frameworks (COFs), on the contrary, are highly ordered, porous, and crystalline materials that can provide a platform to align molecules with specific properties in a well-defined, ordered environment. We synthesized the first antiaromatic framework materials and obtained a series of three highly crystalline and porous COFs based on DBP. Potential applications of such antiaromatic bulk materials were explored: COF films show a conductivity of 4 × 10−8 S cm−1 upon doping and exhibit photoconductivity upon irradiation with visible light. Application as positive electrode materials in Li-organic batteries demonstrates a significant enhancement of performance when the antiaromaticity of the DBP unit in the COF is exploited in its redox activity with a discharge capacity of 26 mA h g−1 at a potential of 3.9 V vs. Li/Li+ . This work showcases antiaromaticity as a new design principle for functional framework materials. KW - SAXS KW - MOUSE KW - Covalent Organic Frameworks KW - Batteries PY - 2023 DO - https://doi.org/10.1021/jacs.2c10501 SP - 1 EP - 12 PB - ACS Publications AN - OPUS4-56958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, F A1 - Wu, Z A1 - Yang, C A1 - Osenberg, M A1 - Hilger, A A1 - Dong, K A1 - Markötter, Henning A1 - Manke, I A1 - Sun, F A1 - Chen, L A1 - Cui, G T1 - Synchrotron X-ray tomography for rechargeable battery research: Fundamentals, setups and applications N2 - Understanding the complicated interplay of the continuously evolving electrode materials in their inherent 3D states during the battery operating condition is of great importance for advancing rechargeable battery research. In this regard, the synchrotron X-ray tomography technique, which enables non-destructive, multi-scale, and 3D imaging of a variety of electrode components before/during/after battery operation, becomes an essential tool to deepen this understanding. The past few years have witnessed an increasingly growing interest in applying this technique in battery research. Hence, it is time to not only summarize the already obtained battery-related Knowledge by using this technique, but also to present a fundamental elucidation of this technique to boost future studies in battery research. To this end, this review firstly introduces the fundamental principles and experimental Setups of the synchrotron X-ray tomography technique. After that, a user guide to ist application in battery research and examples of its applications in Research of various types of batteries are presented. The current review ends with a discussion of the future opportunities of this technique for next-generation rechargeable batteries research. It is expected that this review can enhance the reader’s understanding of the synchrotron X-ray tomography technique and stimulate new ideas and opportunities in battery research. KW - 3D imaging KW - Batteries KW - Synchrotron X-Ray KW - Tomography PY - 2021 DO - https://doi.org/10.1002/smtd.202100557 VL - 5 IS - 9 SP - 2100557 PB - Wiley-VCH AN - OPUS4-53394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kautek, Wolfgang A1 - Conradi, Andrea A1 - Fabjan, Ch. A1 - Bauer, G. T1 - In situ FTIR spectroscopy of the Zn-Br battery bromine storage complex at glassy carbon electrodes KW - In-situ analysis KW - Batteries KW - Buried interface KW - Fourier transform IR spectroscopy PY - 2000 SN - 0013-4686 SN - 1873-3859 VL - 45 IS - 5 SP - 815 EP - 823 PB - Elsevier Science CY - Kidlington AN - OPUS4-994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -