TY - CONF A1 - Beck, Uwe A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Hidde, Gundula A1 - Stockmann, Jörg M. A1 - Weise, Matthias T1 - Ellipsometric imaging of low-contrast surface modifications and depolarization contrast imaging (DCI) of particulate accumulations N2 - Imaging of surfaces regarding topographical, morphological, micro-structural, and chemical features is a key requirement for quality control for the identification of contaminated, degraded, damaged or deliberately modified surface areas vs. clean, virgin, undamaged or unmodified regions. As optical functions may represent any of these changes on the micro- and nano-scale, imaging ellipsometry (IE) is the technique of choice using either intensity, phase, or/and amplitude contrast for visualization of low-contrast surface modifications [1, 2]. Defects or surface and film features whether native or artificial, intended or unintended, avoidable or unavoidable as well as surface pattern are of interest for quality control. In contrast to microscopic techniques operated at normal incidence, ellipsometry as oblique-incidence technique provides improved contrast for vertically nano-scaled add-on or sub-off features such as ultra-thin transparent films, metallic island films, carbon-based thin films, laser modification or laser induced damage, dried stain, cleaning agent or polymeric residue. Two-sample reference techniques, i.e. referenced spectroscopic ellipsometry (RSE) may further increase sensitivity and decrease measurement time. In case of particulate accumulations depolarization contrast imaging (DCI) may improve the lateral resolution beyond the Abbe limit. This has been proven for silica spheres as reference in terms of single particles, particulate accumulations or particulate monolayers and layer stacks. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used for reference measurements of particle diameter, particle height, or particulate layer/accumulation thickness. It has been shown that single silica particles of 250 nm in diameter, i.e. at least a factor of 4 better than the lateral resolution limit as of now, can be visualized on even substrates. However, the ellipsometric measurement of particle diameters of this size needs further efforts interpretation. T2 - Workshop Ellipsometry 2018 CY - Chemnitz, Germaný DA - 19.03.2018 KW - Low-contrast surface modifications KW - Particulate distributions KW - Imaging ellipsometry(IE) KW - Depolarization contrast imaging (DCI) PY - 2018 AN - OPUS4-44548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Baier, Jennifa A1 - Hidde, Gundula A1 - Sahre, Marion A1 - Weise, Matthias T1 - Particles in PVD-coatings: Imperfection or functional add-on feature? N2 - The application of PVD-coatings ranges from mechanical engineering, i.e. thicker tribological coatings, to precision optics, i.e. thinner optical coatings. For physical vapor deposition (PVD) technologies such as evaporation, sputtering, ion beam assisted/driven deposition, vacuum is a prerequisite for two reasons: at first process-related ones (evaporation source, plasma discharge, and mean free path) and at second coating-related ones (pure, perfect, and dense films). Usually, the goal is a homogenous coating of defined stoichiometry and micro-structure without any imperfection. However, the implementation of micro- or nano-particles may occur accidentally or delibe-rately. Independent of the particle origin, there are two fundamental rules regarding coating functionality: at first, the larger the particle diameter to coating thickness ratio the more affected the functionality of the coating, and at second, the larger the material contrast in terms of the functional feature of interest the more affected the coating performance. Hence, embedded particles have to be avoided for the majority of thin films by all means. The unintended implementation of particles usually results in a malfunction of the coating from the beginning or is at least considered as a weak point of the coating creating a time-dependent defect under service conditions. The intended implementation of particles on surfaces and in coatings may create add-on features, topographic ones and functional ones, however, the facts mentioned hold true. Examples of particle-initiated coating defects are demonstrated in dependence on the origin and the field of application. Strategies for deliberate attachment/embedding of particles on surfaces/in coatings are discussed regarding process compatibility and coating integrity. For industrial applications, both the validation of process compatibility of particle injection and the plasma resistance of particles under vacuum and plasma conditions have to be confirmed. Further points of interest are the homogeneity of particle distribution and the avoidance of particle agglomeration which is still a crucial point for dry dispersed particles. So far, technical applications are limited to PVD hybrid coatings, plasma dispersion coatings are still a challenge except for applications where homogeneity is not required as in case of product authentication. T2 - ICMCTF 2018, International Conference on Metallurgical Coatings and Thin Films CY - San Diego, CA, USA DA - 23.04.2018 KW - PVD-coatings KW - PVD-processes KW - Unintended particle generation KW - Particles as imperfections KW - Deliberate particle implementation KW - Particles as add-on features PY - 2018 AN - OPUS4-44973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Mitzkus, Anja A1 - Sahre, Mario A1 - Weise, Matthias A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Basedau, Frank A1 - Hofmann, Detlef A1 - Schukar, Vivien A1 - Kormunda2, M. T1 - Multi-functional coatings for optical sensor applications: Surface plasmon resonance & magneto-optical coupling N2 - Multi-functional coatings are a key requirement for surface engineering. General demands are adhesion and long-term stability under service conditions. The modification of surfaces by means of PVD-, ECD- or hybrid processes allows an add-on functionalization of surfaces by a huge diversity of materials with both lateral and vertical micro-/nano-designs. This fact is a prerequisite for micro- and sensor-systems in lab-on-chip and sensor-on-chip technology. Two layer-based sensor principles are presented, i.e. surface plasmon resonance enhanced spectroscopic ellipsometry (SPREE) for detection of hazardous gases and magneto-optical sensors on smart-coated fiber Bragg gratings (FBG) for structural health monitoring (SHM). The interdependence of substrate features, coating properties, and layer design is discussed firstly for gas sensitivity and selectivity of SPREE-sensors and secondly for sensitivity and selectivity of magneto-strictive coatings to mechanical strain or external magnetic fields resulting in an optical displacement of the Bragg wavelength of FBG-sensors. Moreover, generic features such long-term stability, crucial process-related fabrication conditions, and effects of operational and environmental parameters are discussed with respect to the sensor performance. It has been shown that appropriate layer design and adapted selection of layer materials (SnOx/Au, Fe/Ni:SnOx/Au; Ni/NiFe-Cu-Cr) result in improved sensor parameters and may enable new sensor applications. T2 - SVC TechCon 2018 CY - Orlando, FL, USA DA - 05.05.2018 KW - Multi-functional coatings for sensors KW - Surface plasmon resonance enhanced ellipsometry (SPREE) KW - Gas monitoring KW - Magneto-optical coupling (MOC) KW - Structural health monitoring (SHM) PY - 2018 AN - OPUS4-44976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hertwig, Andreas A1 - Winkler, J. T1 - Standardization of ellipsometry N2 - The talk addresses the STANDARDIZATION OF ELLIPSOMETRY and the following points are discussed in more detail: historical background of ellipsometry, history of International Conferences on Ellipsometry, Workshops Ellipsometry in Germany and Europe, information on German/European Working Group Ellipsometry, technical/industrial importance of ellipsometry, applications on non-ideal material systems and standardization activities on ellipsometry. T2 - DIN NA Dünne Schichten für die Optik, Mainz CY - Mainz, Germany DA - 06.06.2018 KW - Standardization KW - Ellipsometry KW - Modelling KW - Accreditation PY - 2018 AN - OPUS4-45167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Hidde, Gundula A1 - Lange, Thorid A1 - Weise, Matthias A1 - Lerche, D. A1 - Rietz, U. T1 - Adhesion of Coatings vs. Strength of Composite Materials – A Review of Applications Evaluated by Centrifugal Adhesion Testing (CAT) N2 - Sufficient adhesion/tensile strength are basic requirements for any coating/composite material. For coatings, adhesive strength in N/mm2 is of Major interest for various applications such as decorative and water-repellent coatings on wood (paints and varnishes), optical coatings on glass and polymers (reflectors and filters), electrical coatings on semiconductors, glass and polymers (conducting and bondable layers), mechanical coatings on metals and polymers (wear-reduction, scratch-resistance) and adhesion-promoting layers. For composite materials, tensile strength in N/mm2 is also a key quantity for carbon fiber reinforced composites (CFC), laminates and adhesive-bonded joints. Centrifugal adhesion testing (CAT) transfers the single-sample tensile test from a tensile or universal testing machine into an analytical centrifuge as multiple-sample test of up to eight test pieces. The one-sided sample support instead of a two-sided sample clamping and the absence of mounting- and testing-correlated shear forces provides fast and reliable results both for adhesive strength and bonding strength by means of bonded test stamps. For bonding strength, the evaluation of failure pattern from microscopic inspection is required in order to determine the failure pattern according to ISO 10365 such as adhesive failure (AF), delamination failure (DF) and cohesive failure (CF). Hence, one test run by CAT-technology provides either statistics or ranking of up to eight samples at once. For adhesive strength of coatings, a variety of examples is discussed such as ALD-Al203 layers as adhesion promoters, evaporated Ag-layers on N-BK7 glass, sputtered Cr- and Al-layers on Borofloat 33 glass, evaporated Au-films on N-BK7 glass and sputtered SiO2 -layers on CR39 Polymer. Provided adhesive or bonding strength are high enough, the substrate or the joining part may also fail. T2 - Special PSE 2020 CY - Online meeting DA - 07.09.2020 KW - Centrifugal adhesion testing (CAT) KW - Adhesive strength KW - Pull-off test KW - Failure pattern KW - Compound strength PY - 2020 AN - OPUS4-51231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Kubitzki, Jan A1 - Lerche, D. A1 - Rietz, U. T1 - Zentrifugentechnologie zur statistischen Untersuchung von Stumpfklebungen: Ergebnisse ZENSUS-Ringversuchs N2 - Der Vortrag widmet sich der „Zentrifugentechnologie zur statistischen Untersuchung von Stumpfklebungen“ und beschreibt drei wesentlich verschiedene Realsysteme (Fügefläche 1/Klebstoff/ Fügefläche 2), um die Statistik ZPM (wiederholte Ein-Proben-Prüfung) vs. CAT (Mehr-Proben-Prüfung) zu vergleichen. Dazu wurden drei unterschiedliche Klebstoff-klassen mit typischen Fügeteilmaterialkombinationen ausgewählt und in einem Vorversuch mit jeweils 3 unterschiedlichen Prüfgeschwindigkeiten sowohl im Weg-geregelten als auch Kraft-geregelten Mode beansprucht. Die Ergebnisse ZPM vs. CAT und Kraft- vs. Weg-Regelung des Vorversuches zeigten keinerlei Unterschiede auf. Im Ergebnis wurde ein Ringversuch im Kraft-geregelten Mode (6xZPM vs. 8xCAT) für ein Referenzsystem durchgeführt, der nachwies, dass die CAT-Technologie statistisch relevante Prüfergebnisse zur Klebfestigkeit bereitstellt. Es zeigte sich, dass für zwei ZPM-Teilnehmer im Vertrauensbereich 99% statistisch signifikant etwas kleinere Werte der Klebfestigkeit bestimmt wurden, was auf geringfügige Abweichungen von der axialen Ausrichtung des eingespannten Prüflings bei der Ein-Proben-ZPM-Zugprüfung zurückgeführt wird. T2 - VCI CY - Frankfurt/Main, Germany DA - 10.03.2020 KW - Zentrifugentechnologie KW - Statistischen Untersuchung KW - Normung KW - Prüfgeschwindigkeiten KW - Stumpfklebungen PY - 2020 AN - OPUS4-50581 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher-Hofinger, Stefan A1 - Weise, Matthias T1 - Mechanische, topometrische und optische Charakterisierung von Schichten mit Stand der Normung N2 - Der Vortrag „MECHANISCHE, TOPOMETRISCHE UND OPTISCHE CHARAKTERISIERUNG VON SCHICHTEN MIT STAND DER NORMUNG“ widmet sich unterschiedlichen Beschichtungssystemen und deren mechanischer, topometrischer und optischer Charakterisierung. Über die entsprechenden aktuellen Normen wird informiert. Es betrifft Verfahren wie die Instrumentierte Eindringprüfung (IIT), Centrifugal Adhesion Testing, Weißlichtinterferenzmikroskopie, Tastschnittverfahren und Ellipsometrie (SE). T2 - EFDS, V2019, Vakuum und Plasma CY - Dresden, Germany DA - 08.10.2019 KW - Normung KW - Spektrale Ellipsometrie (SE) KW - Instrumentierte Eindringprüfung (IIT) KW - Centrifugal Adhesion Testing (CAT) KW - Weißlichtinterferenzmikroskopie (WLIM, 3D) PY - 2019 AN - OPUS4-49320 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Krüger, Jörg T1 - Plasma Germany, Fachausschuss Normung, Berichtszeitraum Herbst 2018 – Frühjahr 2019 N2 - Der Vortrag gibt den aktuellen Stand der Normung im Bereich der Oberflächentechnik insbesondere der Oberflächenanalytik und der Oberflächenmess- und -prüftechnik wider. Vorgestellt wird der Status technischer Berichte, Normenentwürfe und Normen u.a. zur Bewertung von Auflösung und Schärfe mit strahlbasierten Methoden im Nanometer- und Mikrometerbereich, zur Messung von Schichtdicken und Nanopartikeln in kritischen Dimensionen einschließlich Größen- und Formverteilungen mittels REM, zur Messung der Schichtdicke von Nanomaterialien und zur Klassifizierung von Kohlenstoffschichten mittels Ellipsometrie, zur Standardisierung der Ellipsometrie, zur Kalibrierung von Konfokalmikros-kopen für die Formmessung, zur linear elastisch dynamischen instrumentierten Eindringprüfung, zur Messung der flächenbezogenen Masse mittels AAS und ICP, zur Schichtpotentialmessung von Mehrfach-Nickelschichten, zur Schichtdicken und Flächen-widerstandsbestimmung sowie zur Bestimmung der Schichthaftung mittels Zentrifugentechnologie. T2 - Plasma Germany, Fachausschuss Normung, CY - Karlsruhe, Germany DA - 09.04.2019 KW - Stand der Normung KW - Oberflächenanalytik KW - Oberflächenmesstechnik KW - Qualitätssicherung PY - 2019 AN - OPUS4-48874 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Krüger, Jörg T1 - Plasma Germany, Fachausschuss Normung, Berichtszeitraum Frühjahr 2018 - Herbst 2018 N2 - Der Vortrag gibt den aktuellen Stand der Normung im Bereich der Oberflächen-technik insbesondere der Oberflächenanalytik und der Oberflächenmess- und -prüftechnik wider. Vorgestellt wird der Status technischer Berichte, Normenentwürfe und Normen u.a. zur Charakterisierung von funktionellen Glasoberflächen für bioanalytische Anwendungen, zur Messung der Schichtdicke von Nanomaterialien mittels Ellipsometrie, zur Kalibrierung von Interferometern und Interferenzmikroskopen für die Formmessung, zur Rockwelleindringprüfung zur Bewertung der Schicht-haftung, zu den Grundlagen der Ellipsometrie, zur Messung der Schichtdicke mittels Wirbelstromverfahren, zur Schichtpotentialmessung von Mehrfach-Nickelschichten, zu Filtern und Augenschutzgeräten gegen Laserstrahlung sowie zur Bestimmung der Schichthaftung mittels Zugversuch. T2 - Fachausschuss Normung, Herbstsitzung CY - Jena, Germany DA - 06.11.2018 KW - Stand der Normung KW - Oberflächentechnik KW - Oberflächenanalytik KW - Oberflächenmesstechnik KW - Oberflächenprüftechnik PY - 2018 AN - OPUS4-48894 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Stockmann, Jörg M. A1 - Weise, Matthias A1 - Rietz, U. A1 - Lerche, D. T1 - Centrifugal force meets materials testing – analytical centrifuge as multipurpose tool for tensile and compressive stress testing N2 - Up until several years ago, tensile and compressive tests have been exclusively carried out as single-sample tests within a tensile, hardness or universal testing machine. The availability of centrifuge technology changed this situation in 2013 in several ways because centrifugal force is used as testing force within a rotational reference frame. Firstly, multiple-sample strength testing became feasible for both tensile load condi-tions, e.g. determination of composite, bonding or adhesive strength, and compressive load conditions, e.g. hardness, compressibility and compactibility. Secondly, there is no need for a two-sided sample clamping and double-cardanic suspensions as samples are simply inserted using a one-sided sample support. Thirdly, shear forces can be avoided by means of guiding sleeves which steer test stamps acting as mass bodies for either tensile or compressive testing. Fourthly, up to eight samples can be tested under identical conditions within a very short period of time, typically within 15 minutes including sample loading and unloading. Hence, either a reliable statistics (of identical samples) or a ranking (of different samples) can be derived from one test run. The bench-top test system is described in detail and demonstrated that centrifugal force acts as testing force in an appropriate way because Euler and Coriolis force do not affect the testing results. Examples for both tensile strength testing, i.e. bonding strength of adhesives-bonded joints and adhesive strength of coatings, and compres-sive strength testing, i.e. Vickers-, Brinell- and ball indentation hardness and deter-mination of spring constants, are presented, discussed and compared with conven-tional tests within tensile, hardness or universal testing machines. At present, a maximum testing force of 6.5 kN can be realized which results at test stamp diameters of 5 mm, 7 mm, and 10 mm in tensile or compressive stress values of 80 MPa, 160 MPa, and 320 MPa. For tensile strength, this is already beyond bonding strength of cold- and warm-curing adhesives. Moreover, centrifuge technology is compliant to standards such as EN 15870, EN ISO 4624, EN ISO 6506/6507 and VDI/VDE 2616. Programmable test cycles allow both short-term stress and log-term fatigue tests. Based on a variety of examples of surface and bonding technology, applications in both fields R&D and QC are presented. Meanwhile, centrifuge technology is also accredited according to DIN EN ISO/IEC 17025. T2 - Intermationa Conference Dispersion Analysis & Materials Testing CY - Berlin, Germany DA - 22.05.2019 KW - Centrifugal Force KW - Compressive Stress KW - Tensile Stress PY - 2019 AN - OPUS4-48310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hidde, Gundula A1 - Lange, Thorid A1 - Gargouri, H. A1 - Kärkkänen, I. A1 - Naumann, F. T1 - Plasma Activation and Plasma-assisted ALD Surface Modification of Polymers for Improved Bonding and Adhesive Strength N2 - Bonding strength is crucial on polymers of low surface energy, for clean surfaces limited to 0.5, 1, and 2 MPa for PTFE, PP, and PE. Plasma treatment may improve bonding strength by a factor of 2 (PTFE) or 5 (PP and PE). The efficiency of treatment is usually 10% as both low pressure and atmospheric pressure processes show low topographic conformity. Besides, lifetime of activation/modification is rather short. Hence, bonding has to be carried out immediately after plasma treatment. The concept of plasma-assisted ALD (atomic layer deposition) interlayers was introduced in the project HARFE of SENTECH (modification/deposition/in-situ monitoring) and BAM (bonding, characterization, testing). ALD deposition has a high surface conformity and for dielectric films of Al2O3 also a good long-term stability given that the films are dense enough. Based on TMA and O2/O3 precursors, ALD layer stacks from 60 to 375 monolayers were prepared under different conditions. For a transfer time of 24 hours from deposition to measurement, bonding strength could be increased up to 5 MPa (PTFE) respectively 10 MPa (PP, PE). The huge potential of ALD layers as adhesive interlayers was demonstrated for Al2O3 on stainless steel with bonding strength beyond 15 MPa, i.e. interface strength within the ALD stack is also in this range. This is a prerequisite for subsequent PVD/CVD-deposition in hybrid systems. By means of the SI ALD LL system of SENTECH thermal and plasma-supported ALD processes can be alternatively realized. Ellipsometric in-situ monitoring provides monolayer sensitivity and reveals that the efficient bonding of the lower ALD layers on the polymer has to be further improved. Testing of bonding strength was realized by CAT (centrifugal adhesion testing) technology. It was shown that ALD modification correlates with the increase of surface energy and bonding strength. T2 - PSE 2018 - 16th Conference on Plasma Surface Engineering CY - Garmisch-Partenkirchen, Germany DA - 17.09.2018 KW - Plasma activation KW - Plasma-assisted ALD modification KW - Adhesive ALD interlayer KW - Bonding strength KW - Adhesive strength PY - 2018 AN - OPUS4-46015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hertwig, Andreas A1 - Kormunda, M. A1 - Ryšánek, P. A1 - Ivanov, L. T1 - Characterisation of magnetron sputtered SnZnOx by means of spectroscopic ellipsometry - how can we analyse TCO materials optically? N2 - Transparent conductive oxide (TCO) films are a vital part of a large part of modern technology. The production of TCO materials has sparked much development in plasma coating technology. Quality control measurements of these layers are therefore important in many fields of optics and electronics such as high efficiency thin film photovoltaics. In this presentation, we report on optical measurements of ZnSnOx layers generated by DC/RF magnetron plasma co-sputtering. By changing the respective power on two different targets, the overall power, the gas composition and post-treatment, the properties of this type of layers can be varied in a number of parameters. The optical, electrical, and chemical properties of TCO layers are the technically most important properties together with the layer thickness. The dielectric function of layers is accessible by means of spectroscopic ellipsometry, which also yields the very important value for the layer thickness at the same time. It would be a significant step forward in quality control to use this non-destructive method also as a fast test for electrical properties. Therefore, we report on the optical properties connected to the production parameters, and also on our preliminary results connecting the optical dielectric function (in the visible and near infrared) to the electrical conductivity of the layers. We discuss the effect of deposition parameters on the optical properties of the layers and present an approach for correlating optical and electrical properties. Further, we discuss the question of accuracy of optical properties gained from model-fit-based optical methods and the use of different parameterised models for the dielectric function to achieve this. T2 - PSE 2018 - 16th Conference on Plasma Surface Engineering CY - Garmisch-Partenkirchen, Germany DA - 17.09.2018 KW - Mixed Oxides KW - TCO KW - Quality Control KW - Ellipsometry KW - Optical Constants PY - 2018 AN - OPUS4-46388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher, Stefan A1 - Lange, Thorid A1 - Rietz, U. A1 - Lerche, D. T1 - State-of-the-Art in Multiple-Sample Evaluation of Adhesive and Bonding Strength N2 - The paper addresses the “State-of-the-Art in Multiple-Sample Evaluation of Adhesive and Bonding Strength” and the following points are discussed in more detail: 1. Motivation (coatings, varnishes, tapes, laminates, CFRP, adhesive-bonded joints) 2. Conventional single-sample testing (evaluation of adhesive and bonding strength; failure pattern) 3. Multiple-sample handling (MSH), bonding (MSB), and testing: centrifugal adhesion testing (CAT) (multiple-sample approach, tensile test within a centrifuge) 4. Application examples of CAT-Technology™ (laminates, optical coatings, CFRP joints) Finally, a summary is given regarding status quo and benefits of CAT-technology under tensile stress conditions whereas examples of testing in a centrifuge under compressive stress conditions are mentioned in the outlook. T2 - The 5th International Conference Competitive Materials and Technology Processes CY - Miskolc-Lillafüred, Hungary DA - 08.10.2018 KW - Centrifugal Adhesion Testing KW - CAT KW - Multiple-sample handling (MSH) KW - Multiple-sample bonding (MSB) KW - Tensile strength of laminates KW - Tensile strength of coatings KW - Adhesive strength KW - Bonding strength PY - 2018 AN - OPUS4-46336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher, Stefan A1 - Weise, Matthias T1 - Auf dem Weg zu Industrie 4.0: Bestimmung von Messunsicherheitsbudgets in der Oberflächentechnik N2 - Vorgestellt wurde die Bestimmung von Messunsicherheitsbudgets für sehr unterschiedliche physikalische Größen, die in der Oberflächentechnik von hoher Relevanz sind: Stufenhöhe h, Schichtdicke d, Eindringhärte HIT und Haftfestigkeit. Die Unterschiede betreffen die Art der Prüfmethodik (optisch zerstörungsfrei vs. mechanisch invasiv/zer-störend), die laterale Größe des Integrationsgebietes der Messung (lokal:nano bis sub-mikro vs. global: mikro bis makro) und die Art der Bestimmung von Messunsicherheitsbudgets (physikalische Größen: direkt rückführbar; Werkstoffkenngröße: genormt; Systemkenngröße: genormt). Im Rahmen von Industrie 4.0 werden ausgehend der geforderten Spezifikation des beschichteten Produkts (Mittelwert mit Vertrauensbereich oder Mindestwert) durchgehende Toleranzbänder zur Oberflächenmodifizierung/Beschichtung des Substrats, einhergehend mit Prozessfenstern, die diese Toleranzbänder garantieren, erforderlich, die zuverlässig erfasst werden müssen. Die Frage der anzuwendenden Mess- und Prüftechnik und die damit notwendige Betrachtung von Messunsicherheitsbudgets ist für die Digitalisierung von Konditionierungs-, Zustands-, Regel- und Steuergrößen unverzichtbar. Mit Blick auf die Einhaltung von Prozessfenstern und die dafür notwendige Prozessführung wird technologisches Kern-Know-how digitalisiert, das es unbedingt zu schützen gilt. Nur lokale Netze können diese Sicherheit garantieren, in globalen Netzen ist die Datensicherheit bestenfalls maximierbar. T2 - 14. ThGOT Thementage Grenz- und Oberflächentechnik CY - Zeulenroda, Germany DA - 12.03.2019 KW - Oberflächentechnik KW - Messunsicherheit KW - Messtechnik KW - Prüftechnik KW - Haftfestigkeit PY - 2019 AN - OPUS4-47612 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Weise, Matthias A1 - Lerche, D. A1 - Rietz, U. T1 - CAT-Technologie zur Bestimmung der Haftfestigkeit Dünner Schichten N2 - Der Vortrag widmet sich der „CAT-TECHNOLOGIE ZUR BESTIMMUNG DER HAFTFESTIGKEIT DÜNNER SCHICHTEN“ und beschreibt die Punkte „Motivation –CAT-Technologie“ (CAT: Centrifugal Adhesion Testing) und die „Haftfestigkeit von Schichten“, (Ag-Schichten auf N-BK7 Glas, Cr- und Al-Schichten auf Borofloat 33 Glas, Au-Schichten auf N-BK7 Glas und SiO2-Schichten auf CR39 Polymer) im Einzelnen. T2 - EFDS, Workshop: Haft- und Antihaftschichten CY - Dresden, Germany DA - 31.01.2019 KW - CAT-Technologie KW - Centrifugal Adhesion Testing KW - Dünne Schichten KW - Haftfestigkeit PY - 2019 AN - OPUS4-47489 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Hidde, Gundula A1 - Lerche, D. A1 - Rietz, U. T1 - CAT-Technologie zur Bestimmung der Klebfestigkeit N2 - Der Vortrag widmet sich der „ CAT-TECHNOLOGIE ZUR BESTIMMUNG DER KLEBFESTIGKEIT“ und beschreibt die Punkte „Motivation –CAT-Technologie (Centrifugal Adhesion Testing), Klebfestigkeit ( Materialscreening verschiedener Werkstoffklassen, Klebstoffscreening fürV2A gegenV2A als Referenz, Klebstoffscreening für Niedrigenergie-Polymere und Oberfächenmodifizierung von Niedrigenergie-Polymeren) und Verbundfestigkeit (“Stirnabzug vs. Zug-Scher-Prüfung an CFK) im Einzelnen. T2 - 17. Praxisseminar KLEBEN CY - IWF Jena, Germany DA - 30.01.2019 KW - CAT-Technologie KW - Klebfestigkeit KW - Verbundfestigkeit KW - Niedrigenergie-Polymeren PY - 2019 AN - OPUS4-47466 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, S. A1 - Rietz, U. A1 - Stockmann, Jörg M. T1 - Materials testing using centrifuge technology a journey through time from 2004 to 2024 N2 - This presentation provides an overview of materials testing using centrifuge technology in the period from 2004 to 2024. The development, the proof of concept, the functional principle, various operating modes as well as applications and examples are shown. T2 - ICDAMT 2024 CY - Berlin, Germany DA - 10.06.2024 KW - Centrifuge technology KW - Materials testing KW - Centrifugal adhesion testing KW - Tensile and cmpressive stress testing PY - 2024 AN - OPUS4-60541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bawadkji, O. A1 - Cherri, M. A1 - Schäfer, A. A1 - Herziger, S. A1 - Nickl, Philip A1 - Achazi, K. A1 - Donskyi, Ievgen A1 - Adeli, M. A1 - Haag, R. T1 - One-pot covalent functionalization of 2D black phosphorus by anionic ring opening polymerization N2 - In this work, a one-pot approach for the covalent functionalization of few-layer black phosphorus (BP) by anionic ring opening polymerization of glycidol to obtain multifunctional BP-polyglycerol (BP-PG) with high amphiphilicity for near-infrared-responsive drug delivery and biocompatibility is reported. Straightforward synthesis in combination with exceptional biological and physicochemical properties designates functionalized BP-PG as a promising candidate for a broad range of biomedical applications. KW - 2D nanomaterial KW - Amphiphilicity KW - Black phosphorus KW - Hyperbranched KW - Polyglycerol KW - Water dispersibility PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568833 DO - https://doi.org/10.1002/admi.202201245 SN - 2196-7350 VL - 9 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baumann, Maria A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Wold, C. A1 - Uliyanchenko, E. T1 - Characterization of copolymers of polycarbonate and polydimethylsiloxane by 2D chromatographic separation, MALDI-TOF mass spectrometry, and FTIR spectroscopy N2 - The structure and composition of polycarbonate polydimethylsiloxane copolymer (PC-co-PDMS) was investigated by applying various analytical approaches including chromatographic separation methods, spectrometric, and spectroscopic detection techniques. In particular, size exclusion chromatography (SEC) and liquid adsorption chromatography operating at different conditions (e.g. using gradient solvent systems) were used to achieve separations according to molar mass and functionality distribution. The coupling of both techniques resulted in fingerprint two-dimensional plots, which could be used to easily compare different copolymer batches. Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry was applied for structural investigations. The different ionization behavior of both comonomers, however, strongly limited the applicability of this technique. In contrast to that, Fourier-transform Infrared (FTIR) spectroscopy could be used to quantify the amount of PDMS in the copolymer at different points in the chromatogram. The resulting methodology was capable of distinguishing PC-co-PDMS copolymer from PC homopolymer chains present in the material. KW - FTIR KW - Liquid chromatography KW - Mass spectrometry KW - Gradient elution KW - Polycarbonate-co-dimethylsiloxane copolymer PY - 2020 DO - https://doi.org/10.1080/1023666X.2020.1820170 VL - 25 IS - 7 SP - 1 EP - 12 PB - Taylor & Francis AN - OPUS4-51369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bauer, J. A1 - Miclea, P.-T. A1 - Braun, U. A1 - Altmann, Korinna A1 - Turek, M. A1 - Hagendorf, C. T1 - Microplastic detection and analysis in water samples N2 - Microplastic detection in water samples becomes important for tracing microplastic sources. Microplastic may harm desalination facilities by blocking filters and disturbing the marine food chain. Thermo analytical methods such as pyrolysis gas chromatography mass spectroscopy, and spectroscopic methods like (micro) Raman spectroscopy or (micro) Fouriertransform infrared spectroscopy in combination with appropriate filters and sample preparation are suitable for analyzing microplastics on a scale from 1 µm to 1000 µm fast and unambiguous. While the thermo analytical methods are suitable for larger sample volumes, Raman spectroscopy and Fouriertransform infrared spectroscopy are able to detect and analyze single microplastic particles for instance in bottled water. Machine learning algorithms ensure a reliable classification of different plastic materials. T2 - International Conference on Sustainable Energy-Water-Environment Nexus in Desert Climate 2019 CY - Ar-Rayyan, Qatar DA - 02.12.2019 KW - Microplastics KW - Water samples PY - 2022 SP - 111 EP - 113 PB - Springer AN - OPUS4-56240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Müller, Patrick A1 - Bertin, Annabelle A1 - Schartel, Bernhard T1 - Hyperbranched Rigid Aromatic Phosphorus-Containing Flame Retardants for Epoxy Resins N2 - A rigid aromatic phosphorus-containing hyperbranched flame retardant structure is synthesized from 10-(2,5 dihydroxyphenyl)-10H-9-oxa- 10-phosphaphenanthrene-10-oxide (DOPO-HQ), tris(4-hydroxyphenyl)phosphine oxide (THPPO), and 1,4-terephthaloyl chloride (TPC). The resulting poly-(DOPO-HQ/THPPO-terephthalate) (PDTT) is implemented as a flame retardant into an epoxy resin (EP) at a 10 wt% loading. The effects on EP are compared with those of the monomer DOPO-HQ and triphenylphosphine oxide (OPPh3) as low molar mass flame retardants. The glass transition temperature, thermal decomposition, flammability (reaction to small flame), and burning behavior of the thermosets are investigated using differential scanning calorimetry, thermogravimetric analysis, pyrolysis combustion flow calorimetry, UL 94-burning chamber testing, and cone calorimeter measurements. Although P-contents are low at only 0.6 wt%, the study aims not at attaining V-0, but at presenting a proof of principle: Epoxy resinswith PDTT show promising fire performance, exhibiting a 25% reduction in total heat evolved (THE), a 30% reduction in peak heat release rate (PHRR) due to flame inhibition (21% reduction in effective heat of combustion (EHC)), and an increase in Tg at the same time. This study indicates that rigid aromatic hyperbranched polymeric structures offer a promising route toward multifunctional flame retardancy. KW - Hyperbranched KW - Aromatic KW - Phosphorus KW - Phosphine oxide KW - DOPO KW - Flame retardant KW - Xpoxy resin KW - Rigid PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525910 DO - https://doi.org/10.1002/mame.202000731 SN - 1439-2054 VL - 306 IS - 4 SP - 731 PB - Wiley AN - OPUS4-52591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartelmeß, Jürgen A1 - Gawlitza, Kornelia A1 - Kraus, Werner A1 - Chlvi-Iborra, Katherine A1 - Tiebe, Carlo A1 - Noske, Reinhard A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Developments Towards a BODIPY-based fluorometric sensing device for multiple hazardous gases N2 - Fluorometric sensing is a versatile approach for trace analysis outside of the laboratory, requiring suitable sensor materials and their integration into sensing devices. The versatility of fluorophores as probes, especially in terms of the possibility to tailor their optical as well as their recognition properties by synthetic modifications in a wide range, renders them as superior active component for the preparation of optical sensing devices. Recent works at BAM in this field include, for example, the detection of nerve gas agents, illustrating impressively the aforementioned benefits of fluorophores in optical sensing applications. In the interdisciplinary project presented here, we target hazardous gases such as ammonia, benzene, and hydrogen sulfide, next to others, which pose a major threat to human health and environmental safety and for which the availability of a sensitive and reliable detection method is highly desirable. The dyes presented follow a “turn-on” fluorescence schematic, which allows for the selective and sensitive detection of the respective gaseous analyte. The immobilization of the probe in polymeric matrices is then the next step toward the fabrication of a prototype device for molecular sensing. Further steps in the project include the assembly of instruments for test-atmosphere generation, the referencing of the sensor system, development and implementation of an optical setup, and the testing of the prototype device under laboratory conditions and in the field. In this presentation, we give an overview over the recent developments on this topic in our groups. Highlights are hydrogen sulfide sensitive, BODIPY based transition metal complexes, which allow for a sensitive as well as selective detection of the toxic gas. In addition, we present a novel class of highly substituted BODIPY derivatives – pocket-BODIPYs – which are of a synthetically high versatility and can readily be modified to create pockets in the periphery of the molecule of defined geometries. This is illustrated on the successful encapsulation of benzene by a pocket-BODIPY derivative, confirmed by X-ray crystallographic analysis as well as by further spectroscopic and analytical methods. T2 - International Conference on Porphyrins and Phthalocyanins (ICPP-10) CY - Munich, Germany DA - 01.07.2018 KW - BODIPY dye KW - Fluorometric sensing KW - Gas sensing PY - 2018 AN - OPUS4-45646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartczak, D. A1 - Hodoroaba, Vasile-Dan T1 - Report on the development and validation of the reference material candidates with non-spherical shape, non-monodisperse size distributions and accurate nanoparticle concentrations N2 - One aim of the EMPIR nPSize project 17NRM04 was to develop and validate three classes of candidate reference (test) materials (RTMs), with i) well-defined non-spherical shape, ii) relatively high polydispersity index, and iii) accurate particle concentrations. To fulfil the requirements of the project, 11 different types of materials were prepared. Following the initial assessment of the materials suitability, nPSize5_PT_UNITO, nPSize6_AC_UNITO and nPSize7_GN_CEA materials were found unsuitable for the project, due to various reasons. PT material was deemed unsuitable due to its predominantly agglomerated nature. AC material contained relatively high amount of impurities (other particle forms). GN material was found too heterogeneous in both the length and width for the purpose of the project. The remaining 8 candidate RTMs were assessed for their homogeneity and stability and used for successful delivery of the associated activities within the nPSize project. KW - Nanoparticles KW - Particle size distribution KW - Reference materials KW - Non-spherical shape KW - EMPIR nPSize KW - Electron microscopy KW - AFM KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556015 DO - https://doi.org/10.5281/zenodo.7016466 SP - 1 EP - 22 PB - Zenodo CY - Geneva AN - OPUS4-55601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartczack, Dorota A1 - Taché, Olivier A1 - Hodoroaba, Vasile-Dan T1 - Report on the homogeneity assessment of bimodal gold materials (nPSize1 and nPSize2) and particle number concentration by frequency method N2 - The main objective was to assess homogeneity of two bimodal gold materials, namely nPsize1 and nPSize2, containing approximately 1:1 and 10:1 particle number-based ratio of ~30nm and ~60nm particles. Particle number-based concentration within the two size fractions was determined with spICP-MS using the particle frequency method of calibration. KW - Nanoparticles KW - Homogeneity KW - Particle number concentration KW - Gold KW - nPSize PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595451 DO - https://doi.org/10.5281/zenodo.10654245 SP - 1 EP - 5 PB - Zenodo CY - Geneva AN - OPUS4-59545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barnefske, Lena A1 - Petersen, Andreas A1 - Heidmann, Gerd A1 - Sturm, Heinz T1 - Development of a self-healing silicone rubber for high-voltage cable accessories N2 - One of the biggest problems in high-voltage silicone rubber insulation cable accessories is the damage on electrical treeing, initiated by partial discharges. The electrical treeing starts at unavoidable imperfections inside the material or at interfaces. The damage is usually irreversible and leads around the starting points to a partial destruction of the material. To prolong the lifetime and thereby to increase the assurance of the structural component commonly, for mechanical improvement constituted filler is modified to obtain a self-healing silicone rubber. Damage mechanism is analysed to address the filler to the damage mode. T2 - DGP-Frühjahrstagung und EPS-CMD27 CY - Berlin, Germany DA - 11.03.2018 KW - Self-healing silicone rubber KW - HV cable accessories PY - 2018 AN - OPUS4-45333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barnefske, Lena A1 - Sturm, Heinz A1 - Arzt, Eduard T1 - Smart materials inspired by nature N2 - In the scope of the event two different smart materials inspired by nature were presented. On the one hand a self-healing material based on capsule based self-healing and on the other hand a micropatterned dry adhesive. T2 - Leibniz Young Polymer Scientist Forum CY - Aachen, Germany DA - 28.06.2018 KW - Self-healing KW - Smart materials KW - Micropatterned dry adhesive PY - 2018 AN - OPUS4-45334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baláž, M. A1 - Tešinský, M. A1 - Marquardt, Julien A1 - Škrobian, M. A1 - Daneu, N. A1 - Rajňák, M. A1 - Baláž, P. T1 - Synthesis of copper nanoparticles from refractory sulfides using a semi-industrial mechanochemical approach N2 - The large-scale mechanochemical reduction of binary sulfides chalcocite (Cu2S) and covellite (CuS) by elemental iron was investigated in this work. The reduction of Cu2S was almost complete after 360 min of milling, whereas in the case of CuS, a significant amount of non-reacted elemental iron could still be identified after 480 min. Upon application of more effective laboratory-scale planetary ball milling, it was possible to reach almost complete reduction of CuS. Longer milling leads to the formation of ternary sulfides and oxidation product, namely cuprospinel CuFe2O4. The rate constant calculated from the magnetometry measurements using a diffusion model for Cu2S and CuS reduction by iron in a large-scale mill is 0.056 min−0.5 and 0.037 min−0.5, respectively, whereas for the CuS reduction in a laboratory-scale mill, it is 0.1477 min−1. The nanocrystalline character of the samples was confirmed by TEM and XRD, as the produced Cu exhibited sizes up to 16 nm in all cases. The process can be easily scaled up and thus copper can be obtained much easier from refractory minerals than in traditional metallurgical approaches. KW - Mechanochemistry KW - Copper sulfides KW - Copper nanoparticles KW - Magnetometry KW - Oxidation PY - 2020 DO - https://doi.org/10.1016/j.apt.2019.11.032 VL - 31 IS - 2 SP - 782 EP - 791 PB - Elsevier B.V. AN - OPUS4-50665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Baloh, P. A1 - Bauer, L. A1 - Bendová, A. A1 - Čermák, P. A1 - Fellner, K. A1 - Ghanathe, M. A1 - Hernández Alvarez, O. E. A1 - Hricov, Š. A1 - Jochum, J. K. A1 - Kotvytska, L. A1 - Kumar, S. A1 - Labh, A. A1 - Machovec, P. A1 - Pauw, Brian Richard A1 - Ramszová, K. A1 - Walz, E. A1 - Wild, P. T1 - An exercise in open data: Triple axis data on Si single crystal N2 - Efforts are rising in opening up science by making data more transparent and more easily available, including the data reduction and evaluation procedures and code. A strong foundation for this is the F.A.I.R. principle, building on Findability, Accessibility, Interoperability, and Reuse of digital assets, complemented by the letter T for trustworthyness of the data. Here, we have used data, which was made available by the Institute Laue-Langevin and can be identified using a DOI, to follow the F.A.I.R.+T. principle in extracting, evaluating and publishing triple axis data, recorded at IN3. KW - Open data KW - Neutron diffraction KW - Analysis KW - Open science PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562257 DO - https://doi.org/10.48550/arXiv.2010.12086 SN - 2331-8422 SP - 1 EP - 4 PB - Cornell University CY - Ithaca, NY AN - OPUS4-56225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakenecker, A. A1 - Topolniak, Ievgeniia A1 - Lüdtke-Buzug, K. A1 - Pauw, Brian Richard A1 - Buzug, T. T1 - Additive manufacturing of superparamagnetic micro-devices for magnetic actuation N2 - 3D microstructures with sub-micron resolution can be manufactured in additive manner applying multi-photon laser structuring technique. This paper is focused on the incorporation of superparamagnetic iron oxide nanoparticles into the photoresist in order to manufacture micrometer-sized devices featuring a magnetic moment. The aim of the project is to achieve untethered actuation of the presented objects through externally applied magnetic fields. Future medical application scenarios such as drug delivery and tissue engineering are targeted by this research. T2 - Additive Manufacturing Meets Medicine 2019 CY - Lübeck, Germany DA - 12.09.2019 KW - MPI KW - Two-Photon Polymerization KW - Magnetic swimmers KW - MPLS PY - 2019 UR - www.journals.infinite-science.de/ammm DO - https://doi.org/10.18416/AMMM.2019.1909S09T06 SP - 153 EP - 154 PB - Infinite Science Publishing AN - OPUS4-49114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baer, D. R. A1 - Karakoti, A. S. A1 - Clifford, C. A. A1 - Minelli, C. A1 - Unger, Wolfgang T1 - Importance of sample preparation on reliable surface characterisation of nano‐objects: ISO standard 20579‐4 N2 - The international ISO Standard 20579‐4, dealing with the history and preparation of nano‐objects for surface analysis, has been developed to help address some of the replication and reproducibility issues caused by the fundamental nature of nanoobjects. Although all types of samples requiring surface analysis need thoughtful preparation, nano‐objects, for which many properties are controlled by their surfaces, present additional challenges in order to avoid variations and artefacts due to the handling and preparation of materials prior to analysis. This international standard is part of a series of standards related to preparation of samples for surface chemical analysis. Parts 1 and 2 of ISO Standard series 20579 address general issues that apply to many samples. Part 3, which is still in development, will focus on biomaterials. Part 4 specifically considers issues that arise due to the inherent nature of nano‐objects. Because of sensitivity to their environment, the standard indicates the minimum Information that needs to be reported about the handling and preparation of nano‐objects prior to surface analysis. This information should become part of sample provenance information that helps assure the reliability and usefulness of data obtained from surface‐analysis in the context of the synthesis, processing, and analysis history of a batch of material. Application of this standard can help address reproducibility and traceability issues associated with synthesis, processing, and characterization of nano‐objects in research and commercial applications. KW - Nano‐object characterization KW - Nanoparticle characterization KW - Provenance information KW - Sample preparation KW - Surface analysis PY - 2018 DO - https://doi.org/10.1002/sia.6490 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 9 SP - 902 EP - 906 PB - John Wiley & Sons, Ltd. AN - OPUS4-45830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Baer, D. R. A1 - Cant, D. J. H. A1 - Castner, D. G. A1 - Ceccone, G. A1 - Engelhard, M. H. A1 - Karakoti, A. S. A1 - Müller, Anja ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Preparation of nanoparticles for surface analysis N2 - A variety of methods used to prepare nano-objects for surface analysis are described along with information about when they might be best applied. Intrinsic properties of NPs which complicate their characterization and need to be considered when planning for surface or other analyses of NPs are identified, including challenges associated with reproducible synthesis and functionalization of the particles as well as their dynamic nature. The relevant information about the sample preparation processes, along with analysis details and data that need to be added to the collection of material provenance information is identified. Examples of protocols that have been successfully used for preparation of nano-objects for surface analysis are included in an annex. KW - Sample preparation KW - Nanoparticles KW - Surface chemistry KW - XPS KW - Dynamic behavior KW - Nano-object KW - Surface analysis PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00018-3 SP - 295 EP - 347 PB - Elsevier CY - Amsterdam AN - OPUS4-50186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baek, W. A1 - Gromilov, S. A1 - Kuklin, A. A1 - Kovaleva, E. A1 - Fedorov, A. A1 - Sukhikh, Alex A1 - Hanfland, M. A1 - Pomogaev, V. A1 - Melchakova, Y. A1 - Avramov, P. A1 - Yusenko, Kirill T1 - Unique Nanomechanical Properties of Diamond-Lonsdaleite Biphases: Combined Exp and Theor consideration of popigai impact diamonds N2 - For the first time, lonsdaleite-rich impact diamonds from one of the largest Popigai impact crater (Northern Siberia) with a high concentration of structural defects are investigated under hydrostatic compression up to 25 GPa. It is found that, depending on the nature of a sample, the bulk modulus for lonsdaleite experimentally obtained by X-ray diffraction in diamond-anvil cells is systematically lower and equal to 93.3−100.5% of the average values of the bulk moduli of a diamond matrix. Density functional theory calculations reveal possible coexistence of a number of diamond/lonsdaleite and twin diamond biphases. Among the different mutual configurations, separate inclusions of one lonsdaleite (001) plane per four diamond (111) demonstrate the lowest energy per carbon atom, suggesting a favorable formation of single-layer lonsdaleite (001) fragments inserted in the diamond matrix. Calculated formation energies and experimental diamond (311) and lonsdaleite (331) powder X-ray diffraction patterns indicate that all biphases could be formed under high-temperature, high-pressure conditions. Following the equation of states, the bulk modulus of the diamond (111)/lonsdaleite (001) biphase is the largest one among all bulk moduli, including pristine diamond and lonsdaleite. KW - Compressibility KW - Lonsdaleite KW - Impact diamonds PY - 2019 DO - https://doi.org/10.1021/acs.nanolett.8b04421 VL - 19 IS - 9 SP - 1570 EP - 1576 PB - ACS AN - OPUS4-47403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babutzka, Martin A1 - Grabowski, Sven A1 - Sahrhage, H. A1 - Lampke, T. T1 - Electrochemical corrosion investigations on binary and ternary zinc alloy coatings using gel electrolytes N2 - Novel agar-based test electrolytes are used to perform electrochemical corrosion investigations on ZnFe and ZnNi binary as well as ZnFeMo ternary zinc coatings. The objectives of the electrochemical investigations include the characterization of the corrosion behavior, the description of the protective effect of the coatings as well as the investigation of the layer formation and degradation under artificial aging. ZnFe and ZnFeMo coatings are applied with varying iron content as well as an additional passivation layer, respectively, to study the effect on corrosion resistance. The results show that the protective effect of the coatings is not negatively influenced by different iron contents or the addition of molybdenum. Additional passivation of the ZnFe-containing coatings by means of a passivating agent leads to a significant improvement in the protective effect. Artificial aging leads to slight degradation of the additional passivation layer whereas coatings without post-treatment enhance their protective effect by the formation of corrosion product layers. KW - Binary zinc alloys KW - Ternary zinc alloys KW - Corrosion testing KW - Gel electrolytes KW - Corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543013 DO - https://doi.org/10.1002/adem.202101336 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ayerdi, J. J. A1 - Aginagalde, A. A1 - Llavori, I. A1 - Bonse, Jörn A1 - Spaltmann, Dirk A1 - Zabala, A. T1 - Ball-on-flat linear reciprocating tests: Critical assessment of wear volume determination methods and suggested improvements for ASTM N2 - In the present work it was shown the importance of the correct selection, implementation, and reporting of wear volume computation method and quanitifies the potential errors. KW - Wear KW - Sliding KW - Surface KW - Analysis KW - ASTM KW - D7755-11 PY - 2021 DO - https://doi.org/10.1016/j.wear.2021.203620 VL - 470-471 SP - 3620 AN - OPUS4-52080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asanova, T.I. A1 - Asanov, Igor A1 - Yusenko, Kirill A1 - Le Fontane, Camille A1 - Gerasimov, E.Y. A1 - Zadesenetz, A.V. A1 - Korenev, S.V. T1 - Time-resolved study of Pd-Os and Pt-Os nanoalloys formation through thermal decomposition of Pd(NH3)(4) OsCl6 and Pt(NH3)(4) OsCl6 complex salts N2 - The formation mechanisms of Pd-Os and Pt-Os alloys in the course of thermal decomposition of iso-formular and isostructural complex salts [Pd(NH3)4][OsCl6] and [Pt(NH3)4][OsCl6] in an inert atmosphere have been studied by in-situ QXAFS, XPS and PXRD. The mechanisms of thermal decomposition of the precursors are found to differ from each other, but the detected intermediate products show no significant effect on the local atomic structure around Os, Pt/Pd in their final products. A crystalline beta-trans-[Pd(NH3)2Cl2] intermediate of the first step of thermal decomposition of [Pd(NH3)4][OsCl6] makes the anion [OsCl6]2− transform differently than that of [Pt(NH3)4][OsCl6]. It transforms into a short-lived [Os(NH3)xCl6-x] (2≤x≤4), and then to a distorted octahedron [OsCl6]2−, similar to the high-temperature modification of OsCl4. In case of [Pt(NH3)4][OsCl6], the intermediate [Os(NH3)2Cl4] modifies into four chlorine coordinated Os,{OsCl4}0/1−. Consecutive reduction of Pd(II)/Pt(II) and Os(IV) to the metals defines the homophilic atomic order with the fcc-Pd covered by a random Pd-Os alloy layer and Os on the surface, that is supported by High-Resolution Transmission Electron Mictroscopy (HRTEM) and Scanning TEM (STEM) energy dispersive X-ray (EDX) data, and the diffusion direction going from the surface (hcp-Os) to bulk (fcc-Pd/Pt). As a result, the heterogeneous alloys are formed with a very similar electronic and local atomic structure of Os and Pd/Pt. Upon alloying, the Os 5d5/2,3/2 and Pt 5d5/2,3/2 levels are depleted in the Pt-Os alloys compared to dispersed hcp-Os, fcc-Pt, and Pt foil. This is an unusual behaviour for Os and Pt, calling into question the versatility of d-band theory in bimetallic Os-alloys. The spin-orbit effect at the Os site has been found for both the Pd-Os and Pt-Os alloys, but it is about 4 times less compared to the complex salts. The obtained values for the complex compounds are comparable with those for the iridates, proposed as materials with spin-orbit-induced properties. KW - Thermal decomposition KW - Quick-EXAFS PY - 2021 DO - https://doi.org/10.1016/j.materresbull.2021.111511 VL - 144 SP - 111511 PB - Elsevier Ltd. AN - OPUS4-54010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asadujjaman, Asad A1 - Espinosa de Oliveira, T. A1 - Mukherji, D. A1 - Bertin, Annabelle T1 - Polyacrylamide ‘‘revisited’’: UCST-type reversible thermoresponsive properties in aqueous alcoholic solutions N2 - Combining experiments and all-atom molecular dynamics simulations, we study the conformational behavior of polyacrylamide (PAM) in aqueous alcohol mixtures over a wide range of temperatures. This study Shows that even when the microscopic interaction is dictated by hydrogen bonding, unlike its counterparts that present a lower critical solution temperature (LCST), PAM shows a counterintuitive tunable upper critical solution temperature (UCST)-type phase transition in water/alcohol mixtures that was not reported before. The Phase transition temperature was found to be tunable between 4 and 60 1C by the type and concentration of alcohol in the mixture as well as by the solution concentration and molecular weight of the polymer. In addition, molecular dynamics simulations confirmed a UCST-like behaviour of the PAM in aqueous alcoholic solutions. Additionally, it was observed that the PAM is more swollen in pure alcohol solutions than in 80% alcoholic solutions due to y-like behaviour. Additionally, in the globular state, the size of the aggregates was found to increase with increasing solvent hydrophobicity and polymer concentration of the solutions. Above ist Phase transition temperature, PAM might be present as individual polymer chains in the coil state (r10 nm). As PAM is a widespread polymer in many biomedical applications (gel electrophoresis, etc.), this finding could be of high relevance for many more practical applications in high performance pharmaceuticals and/or sensors. KW - Thermoresponsive polymer KW - UCST-type polymer KW - Polyacrylamide KW - Water/alcohol mixtures PY - 2018 DO - https://doi.org/10.1039/c7sm02424j SN - 1744-6848 SN - 1744-683X VL - 14 IS - 8 SP - 1336 EP - 1343 PB - Royal Society of Chemistry CY - London AN - OPUS4-44002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid A1 - Franc, Antoine Michel Claude A1 - Bertin, Annabelle T1 - 2,6-Diaminopyridine and Acrylamide-Based Copolymers with Upper Critical Solution Temperature-type Behavior in Aqueous Solution N2 - A novel cop olyme r based on supramolecular motif2,6-diaminopyridin e and water-soluble acrylamide, poly[N-(6-ace tamidopyridin-2-yl) acrylamide-co-acrylamide], was synthe-size d via rev ersible addi tion–fragmentation chain transfer (RAFT)polymerization with various monomer compositions. The thermo-respon sive behavior of the copolymers was studied by turbidime-try and dynamic light scattering (DLS). The obtained copolymersshowed an upper critical solution temperature (UCST)-typ e phasetransition behavior in water and electrolyte solution. The phasetransition temperature was found to increase with decreasingam ount of acrylamide in the copolymer and increasing concentra-tion of the solution. Furth ermore, the phase transition temperatureva ried in aqueous solutions of electrolytes according to the naturean d concentration of the electrolyte in accordance with theHoffmeister series. A dramatic solvent isotope effect on thetransition temperature was o bserved in this study, as the transitiontemperature was almost 10–12C higher in D2OthaninH2Oatthesame concentration and acrylamide co mposition. The size of theaggregates below the transition temperature was larger in D2Ocompared to that in H2O that can be explained by deuterium iso-tope effect. The thermoresponsive behavior of the copolymers wasalso investigated in different cell medium and found to be exhibitedUCST-type phase transition behavior in different cell medium.Such behavior of the copo lyme rs can be useful in many a pplica-tions including biomedical, microfluidics, optical materials, and indrug delivery. KW - 2,6-diaminopyridine KW - Acrylamide KW - Stimuli-responsive polymers KW - Thermo-responsive polymers KW - UCST polymers PY - 2019 DO - https://doi.org/10.1002/pola.29474 SN - 0887-624X VL - 57 IS - 19 SP - 2064 EP - 2073 PB - Wiley AN - OPUS4-49297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arnold, M. A1 - Katzmann, J. A1 - Naik, Aakash Ashok A1 - Görne, A. L. A1 - Härtling, Thomas A1 - George, Janine A1 - Schuster, C. T1 - Investigations on electron beam irradiated rare-earth doped SrF2 for application as low fading dosimeter material: Evidence for and DFT simulation of a radiation-induced phase N2 - A recent approach to measure electron radiation doses in the kGy range is the use of phosphors with an irradiation dose-dependent luminescence decay time. However, the applicability of the previously investigated material NaYF4:Yb3+,Er3+ is limited as it shows pronounced fading. Therefore, in this work, a modified SrF2 synthesis is presented that results in SrF2 nanoparticles codoped with Yb and either Er, Hm, or Tm. To assess their suitability as dosimeter material, dose response, as well as its degree of fading over 50 up to 140 days after irradiation were measured. Fading rates as small as 5% in SrF2:Er,Yb and 4% in SrF2:Ho,Yb were derived, which are comparable to established dosimeter materials. A combination of spectroscopy, diffraction and DFT calculations was used to elucidate the effect of irradiation, pointing towards the formation of a secondary phase of Yb2+ that we predict could be Yb2OF2. This irreversible formation of a secondary phase is considered to be the explanation for the low fading behavior in SrF2-based phosphors compared to NaYF4:Yb, Er, a highly attractive feature for electron beam dosimetry. KW - DFT KW - Structure prediction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554115 DO - https://doi.org/10.1039/D2TC01773C SN - 2050-7526 VL - 10 IS - 32 SP - 11579 EP - 11587 PB - RSC CY - London AN - OPUS4-55411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arinchtein, A. A1 - Ye, M.-Y. A1 - Yang, Q. A1 - Kreyenschulte, C. A1 - Wagner, Andreas A1 - Frisch, M. A1 - Brückner, A. A1 - Kondratenko, E. A1 - Kraehnert, R. T1 - Dynamics of Reaction-Induced Changes of Model-Type Iron Oxide Phases in the CO2-Fischer-Tropsch-Synthesis N2 - Iron-based catalysts are employed in CO2-FTS due to their ability to convert CO2 into CO in a first step and their selectivity towards higher hydrocarbons in a second CO hydrogenation step. According to the literature, iron carbides represent the active phase for hydrocarbon formation and are claimed to emerge in the presence of CO. We propose nanostructured FeOx films as model systems to assess information about the complex phase transformations during CO2-FTS. Mesoporous hematite, ferrihydrite, maghemite, maghemite/magnetite films were exposed to CO2-FTS atmospheres at 20 bar and 300°C. Up to three distinct phases were observed depending on the timeon-stream (TOS): a sintered maghemite/magnetite phase, a carbidic core-shell structure, and a low-crystalline, needle-type oxide phase. Our findings indicate that the formation of an intermediary maghemite/magnetite phase, predominant after short TOS (30 h), precedes the evolution of the carbide phase. Yet, even after prolonged TOS (185 h), no full conversion into a bulk carbide is observed. KW - Nanostructured FeOx films KW - CO2 KW - Scanning Auger Spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549709 DO - https://doi.org/10.1002/cctc.202200240 SN - 1867-3880 VL - 14 IS - 14 SP - 1 EP - 11 PB - Wiley-VCH AN - OPUS4-54970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arinchtein, A. A1 - Schnack, R. A1 - Kraffert, K. A1 - Radnik, Jörg A1 - Dietrich, P. A1 - Sachse, René A1 - Krähnert, R. T1 - Role of Water in Phase Transformations and Crystallization of Ferrihydrite and Hematite N2 - The oxides, hydroxides, and oxo-hydroxides of iron belong to the most abundant materials on earth. They also feature a wide range of practical applications. In many environments, they can undergo facile phase transformations and crystallization processes. Water appears to play a critical role in many of these processes. Despite numerous attempts, the role of water has not been fully revealed yet. We present a new approach to study the influence of water in the crystallization and phase transformations of iron oxides. The approach employs model-type iron oxide films that comprise a defined homogeneous nanostructure. The films are exposed to air containing different amounts of water reaching up to pressures of 10 bar. Ex situ analysis via scanning electron microscopy, Transmission electron microscopy, selected area electron diffraction, and X-ray diffraction is combined with operando near-ambient pressure X-ray photoelectron spectroscopy to follow water-induced changes in hematite nd ferrihydrite. Water proves to be critical for the nucleation of ematite domains in ferrihydrite, the resulting crystallite orientation, and the underlying crystallization mechanism. KW - Iron oxide KW - Ferrihydrite KW - Hematite KW - Water KW - NAP-XPS KW - High pressure PY - 2020 DO - https://doi.org/10.1021/acsami.0c05253 VL - 12 SP - 38714 EP - 38722 PB - ACS Publication AN - OPUS4-51201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aree, T. A1 - McMonagle, C. J. A1 - Michalchuk, Adam A1 - Chernyshov, D. T1 - Low-frequency lattice vibrations from atomic displacement parameters of a-FOX-7, a high energy density material N2 - Highly anharmonic thermal vibrations may serve as a source of structural instabilities resulting in phase transitions, chemical reactions and even the mechanical disintegration of a material. Ab initio calculations model thermal motion within a harmonic or sometimes quasi-harmonic approximation and must be complimented by experimental data on temperature-dependent vibrational frequencies. Here multi-temperature atomic displacement parameters (ADPs), derived from a single-crystal synchrotron diffraction experiment, are used to characterize low-frequency lattice vibrations in the alpha-FOX-7 layered structure. It is shown that despite the limited quality of the data, the extracted frequencies are reasonably close to those derived from inelastic scattering, Raman measurements and density functional theory (DFT) calculations. Vibrational anharmonicity is parameterized by the Grüneisen parameters, which are found to be very different for in-layer and out-of-layer vibrations. KW - Energetic Materials KW - DFT KW - Structural dynamics KW - X-ray diffraction PY - 2022 DO - https://doi.org/10.1107/S2052520622002700 SN - 2052-5206 VL - 78 SP - 376 EP - 384 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-54832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aratsu, K. A1 - Takeya, R. A1 - Pauw, Brian Richard A1 - Hollamby, M.J. A1 - Kitamoto, Y. A1 - Shimizu, N. A1 - Takagi, H. A1 - Haruki, R. A1 - Adachi, S. A1 - Yagai, S. T1 - Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes N2 - Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette. KW - Self-assembly KW - Coaggregation KW - Scattering KW - Simulation KW - AFM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506555 DO - https://doi.org/10.1038/s41467-020-15422-6 VL - 11 IS - 1 SP - Article number: 1623 PB - Springer Nature AN - OPUS4-50655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Angurel, L.A. A1 - Cubero, A. A1 - Martínez, E. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Effects of laser surface processing under different atmospheres on the superconducting properties of pure niobium N2 - Niobium metal is the pure element with the highest superconducting critical temperature (T_c = 9.2 K), which is present in many applications. Particularly, in superconducting radio frequency (SRF) cavities of particle accelerators, the control of the surface characteristics of pure Nb is crucial, as the presence of defects may generate magnetic flux pinning that can increase by more than two orders of magnitude the surface critical current, ic. Several procedures such as chemical- or electro-polishing have been used aiming at cleaning surface contamination and decreasing its roughness. Sub-nanosecond lasers can be applied to generate a broad range of micro and nanostructures (e.g. Laser-Induced Periodic Surface Structures, LIPSS) that strongly modify the materials properties - as wettability, color, oxidation resistance or antibacterial behavior. In this work, we analyze a variety of surface structures generated on pure Nb sheets with different laser systems (UV, Vis and n-IR, fs and ps) by exploring a range of processing parameters. These include pulse overlap, irradiance or the effective number of pulses, under different atmospheres (air, N2, Ar, vacuum). The effects on Tc, critical currents and critical fields (Bc1, Bc2 and Bc3) have been obtained from magnetization, ac susceptibility and heat capacity measurements, revealing their dependence with the different surface nanostructures and the chemical changes generated with these laser treatments. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Niobium KW - Superconductivity PY - 2021 AN - OPUS4-52730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Q. A1 - Bäßler, Ralph A1 - Hertwig, Andreas A1 - Rehfeldt, Rainer A1 - Hidde, Gundula A1 - Otremba, Frank T1 - Investigation of Mechanical Stress and B10 Exposure on FKM Polymer N2 - Mechanical stress often accelerates the failure of polymer materials. The aim of this research is to study the interaction between the sealing material FKM and biofuels B10 (heating oil with 10% biodiesel). The mechanical stress test was carried out in a special apparatus. Both mechanical and non-mechanical stress tests were conducted on specimens at 20, 40, and 70 °C for 28 days to document changes in mass, volume, and tensile properties. Both increasing temperature and mechanical stress have a significant effect on the tensile strength of the FKM polymer when exposed to B10. The combination of increasing temperature and mechanical stress induced rupture within 2 h. It was also established that FKM polymer with pre-exposure in B10 survived longer during mechanical stress compared to specimens exposed only to air. With the support of infrared (IR) spectroscopy, we were able to confirm the penetration of B10 into the FKM polymer. T2 - TMS 2024 Annual Meeting & Exhibition Teilnahme mit Präsentation CY - Orlando-Florida / USA DA - 03.03.2024 KW - Biofuels KW - Sealing materials KW - Mechanical stress KW - Change in tensile properties PY - 2024 DO - https://doi.org/10.1007/978-3-031-50349-8_108 SP - 1253 EP - 1261 PB - Springer CY - Orlando-Florida / USA AN - OPUS4-59638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea T1 - Iron to Gas: Versatile Multiport Flow-Column Revealed Extremely High Corrosion Potential by Methanogen-Induced Microbiologically Influenced Corrosion (Mi-MIC) N2 - Currently, sulfate-reducing bacteria (SRB) is regarded as the main culprit of microbiologically influenced corrosion (MIC), mainly due to the low reported corrosion rates of other microorganisms. For example, the highest reported corrosion rate for methanogens is 0.065 mm/yr. However, by investigating methanogen-induced microbiologically influenced corrosion (Mi-MIC) using an in-house developed versatile multiport flow test column, extremely high corrosion rates were observed. We analyzed a large set of carbon steel beads, which were sectionally embedded into the test columns as substrates for iron-utilizing methanogen Methanobacterium IM1. After 14 days of operation using glass beads as fillers for section separation, the highest average corrosion rate of Methanobacterium IM1 was 0.2 mm/yr, which doubled that of Desulfovibrio ferrophilus IS5 and Desulfovibrio alaskensis 16109 investigated at the same conditions. At the most corroded region, nearly 80% of the beads lost 1% of their initial weight (fast-corrosion), resulting in an average corrosion rate of 0.2 mm/yr for Methanobacterium IM1-treated columns. When sand was used as filler material to mimic sediment conditions, average corrosion rates for Methanobacterium IM1 increased to 0.3 mm/yr (maximum 0.52 mm/yr) with over 83% of the beads having corrosion rates above 0.3 mm/yr. Scanning electron images of metal coupons extracted from the column showed methanogenic cells were clustered close to the metal surface. Methanobacterium IM1 is a hydrogenotrophic methanogen with higher affinity to metal than H2. Unlike SRB, Methanobacterium IM1 is not restricted to the availability of sulfate concentration in the environment. Thus, the use of the multiport flow column provided a new insight on the corrosion potential of methanogens, particularly in dynamic conditions, that offers new opportunities for monitoring and development of mitigation strategies. Overall, this study shows under certain conditions methanogenic archaea can cause higher corrosion than SRB, specific quantifications, i.e., maximum, average, and minimum corrosion rates can be determined, and that spatial statistical evaluations of MIC can be carried out. KW - Microbiologically influenced corrosion KW - Methanogen KW - Methane KW - Biocorrosion KW - Flow system KW - Modeling KW - Multiport PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506084 DO - https://doi.org/10.3389/fmicb.2020.00527 VL - 11 SP - Article 527 PB - Frontiers in microbiology AN - OPUS4-50608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea A1 - Brüggemann, Kristin A1 - Wurzler, Nina A1 - Kleinbub, Sherin A1 - Özcan Sandikcioglu, Özlem T1 - Effect of biocides on highly corrosive methanogenic Archaea N2 - Biocide mitigation strategies of microbiologically influenced corrosion (MIC) in the oil and gas industry have been primarily used to eliminate the growths of sulfate-reducing microorganisms (SRM). However, methanogenic Archaea (MA) can also be highly corrosive by using iron as an electron source for methanogenesis. Because of the fundamental physiological differences between archaea and bacteria, responses of MA towards SRM-specific biocides cannot be deduced using SRM. Due to the lack of information available on the effect of biocides on corrosive MA, we selected THPS, glutaraldehyde, nitrate and perchlorate to compare against corrosive SRM. Preliminary results showed that at low concentrations of THPS (0-10 ppm), growth of MA was not affected, methane production and corrosion rates (0.1 mm/yr) were comparable between the different THPS concentrations. On the contrary, the SRM strain showed decreased corrosion rates (0.18 mm/yr to 0.03 mm/yr) with increasing THPS concentrations. Further corrosion tests including electrochemical measurements of different biocides on the growth of MA and SRM will be conducted. Such knowledge not only provide important insights on the physiological response of MA to biocides but also contribute to more effective mitigation strategies that can be both economic and environmentally beneficial. T2 - 25th Annual Reservoir Microbiology Forum CY - London, UK DA - 20.11.2019 KW - Corrosion KW - Methanogen KW - Microorganism KW - Biocide PY - 2019 AN - OPUS4-49788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Amariamir, Sasan A1 - Benner, Philipp A1 - George, Janine T1 - Prediction of materials synthesizability N2 - In the pursuit of discovering materials with desirable properties, extending the available material libraries is crucial. High-throughput simulations have become an integral part in designing new materials in the past decades. However, there is no straightforward way of distinguishing synthesizable materials from all the proposed candidates. This project focuses on employing AI-driven methods to estimate synthesizability of materials. Up to now, material scientists and engineers have relied on domain knowledge as well as empirical heuristics to guess the stability and synthesizability of molecules and crystals. The famous Pauling rules of crystal stability are an example of such heuristics. However, after the accelerating material discovery in all the years since Pauling, these rules now fail to account for the stability of most known crystals. A new predictive set of heuristics for crystal stability/synthesizability is unlikely to be uncovered by human perception, given the magnitude and dimensionality of crystallographic data. Hence, a data-driven approach should be proposed to find a predictive model or set of heuristics which differentiate synthesizable crystal structures from the rest. The main challenge of this research problem is the lack of a negative set for classification. Here, there are two classes of data: the positive class which contains synthesizable materials and the negative class which contains materials which are not synthesizable. While the data from the positive class is simply the data of crystals which have been experimentally synthesized, we do not have access to data points which are certainly unsynthesizable. Strictly speaking, if an attempt of synthesizing a crystal fails, it does not necessarily follow that the crystal is not synthesizable. Also, there is no database available which contains the intended crystal structures of unsuccessful synthesis attempts. This project proposes a semi-supervised learning scheme to predict crystal synthesizability. The ML model is trained on experimental and theoretical crystal data. The initial featurization focuses on local environments which is inspired by the Pauling Rules. The experimental data points are downloaded through the Pymatgen API from the Materials Project database which contains relaxed structures recorded in Inorganic Crystal Structure Database – ICSD. The theoretical data is queried from select databases accessible through the Optimade project’s API. T2 - MSE Congress 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Synthesizability KW - PU Learning KW - Cheminformatics PY - 2022 AN - OPUS4-56731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Hodoroaba, Vasile-Dan A1 - Braun, U. T1 - CUSP inter-laboratory comparisons N2 - In this breakout session first, an introduction is given on the planning and organisation of an inter-laboratory comparison (ILC) under the pre-standardisation plattform VAMAS within the newly formed technical working area TWA 45 Micro and Nano Plastics in the Environment. An update with the ILCs on micro- and nanoplastic performed so far is also given. In the third part, the requirements for a reference materials are presented. The needs from the different H2020 micro- and nanoplastic projects are collected and compiled in an ILC matrix for joint activities as the next steps. T2 - The European Research Cluster to Understand the Health Impact of Micro- and Nanoplastics (CUSP) Launching Event CY - Online meeting DA - 10.06.2021 KW - Microplastic KW - Nanoplastic KW - Inter-laboratory comparison KW - VAMAS KW - Reference material PY - 2021 AN - OPUS4-52808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Heymann, S. A1 - Braun, U. A1 - Bannick, C.-G. A1 - Heller, C. A1 - Fuchs, M. A1 - Scheid, C. A1 - Abusafia, A. A1 - Steinmetz, H. A1 - Ricking, M. A1 - Kerndorff, A. T1 - Untersuchungsverfahren von Mikroplastikgehalten im Wasser für Praxis und Wissenschaft N2 - Zielsetzung des vom Bundesministerium für Bildung und Forschung geförderten Projektes RUSEKU war es, repräsentative Untersuchungsstrategien für die Detektion von Mikroplastik mittels TED GC/MS in wässerigen Medien zu ermitteln. Dabei wurden verschiedene Probenahmekonzepte und – verfahren für unterschiedliche Fallgestaltungen und Fragestellungen untersucht, sowie neue Filtersysteme entwickelt. Bei der Detektion der Partikel lag der Fokus auf der Anwendung und Weiterentwicklung der ThermoExtraktion/Desorption-Gaschromatographie-Massenspektrometrie (TED-GC/MS) zur Bestimmung von Mikroplastikgehalten. Anwendung fanden die Methoden bei der Beprobung von Flaschenwasser, Waschmaschinenabläufen, dem urbanen Abwassersystem der Stadt Kaiserslautern, sowie in Oberflächengewässer. KW - Mikroplastik KW - TED-GC/MS KW - Mikroplastik-Analytik KW - Probennahme PY - 2021 VL - 14. Jahrgang IS - 3 SP - 147 EP - 152 PB - Deutschen Vereinigung für Wasserwirtschaft, Abwasser und Abfall CY - Hennef AN - OPUS4-52260 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Goedecke, Caroline A1 - Bannick, C.-G. A1 - Abusafia, A. A1 - Scheid, C. A1 - Steinmetz, H. A1 - Paul, Andrea A1 - Beleites, C. A1 - Braun, U. T1 - Identification of microplastic pathways within a typical European urban wastewater system N2 - In recent years, thermoextraction/desorption-gas chromatography/mass spectrometry (TED-GC/MS) has been developed as a rapid detection method for the determination of microplastics (MP) mass contents in numerous environmentally relevant matrices and, in particular, for the measurement of polymers in water samples without time-consuming sample preparation. The TED-GC/MS method was applied to investigate a typical European municipal wastewater system for possible MP masses. Such investigations are important in view of the recent revision of the Urban Wastewater Treatment Directive. Four different representative sampling sites were selected: greywater (domestic wastewater without toilet), combined sewer, and influent and effluent of a wastewater treatment plant (WWTP). All samples were collected by fractional filtration. Filtration was carried out over mesh sizes of 500, 100, 50, and in some cases, 5 µm. Polyethylene (PE), polypropylene (PP), and polystyrene (PS) were detected in all samples, with the PE fraction dominating in all cases. Styrene-butadiene rubber which serves as an indication of tire abrasion, was only found in the influent of the WWTP. The highest MP mass contents were found in the combined sewer, so MP can become a source of pollution during heavy rain events when the capacity limits of the effluent are reached, and the polluted effluent is released uncontrolled into the environment. Based on the studies, MP retention from the WWTP could be estimated to be approximately 96%. Few trends in polymer type or mass contents were detected within the different fractions of the samples or when comparing samples to each other. KW - Microplastics KW - Microplastic analysis KW - TED-GC/MS KW - Microplastic pathways KW - Mass contents PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568289 DO - https://doi.org/doi.org/10.1002/appl.202200078 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -