TY - JOUR A1 - Kolkoori, Sanjeevareddy A1 - Wrobel, Norma A1 - Hohendorf, Stefan A1 - Redmer, Bernhard A1 - Ewert, Uwe T1 - Mobile high-energy X-ray radiography for nondestructive testing of cargo containers JF - Materials evaluation N2 - Radiologic evaluation techniques are nondestructive testing (NDT) used to detect the bulk of explosives and contraband materials in large objects. As compared to conventional low-energy (<450 key) X-ray imaging, high-energy (>1 MeV) digital X-ray radiography is required for the NOT of large containers because of the need for high penetration through thick materials, sensitivity, and the ability to distinguish between low-and high-Z materials. Mobile, high-energy, and high-resolution radiologic techniques are useful to detect contraband and threat materials in digital radiographic images of containers with complex packing. This paper presents a mobile, high-energy X-ray radiographic technique for the in-field nondestructive inspection of cargo containers. The developed experimental technique consisted of a betatron as a high-energy (7.5 MeV) X-ray source and a high-resolution (400 mu m) matrix detector for the digital X-ray imaging. In order to evaluate the detection efficiency and image quality of the measurement technique, a test specimen was proposed that was made of a 3 mm thick steel container with an inner dimension of 60 x 30 x 40 cm(3) comprising different low-and high-Z materials. Image quality indicators were used to assess the essential image quality parameters such as image basic spatial resolution, effective attenuation coefficient, and signal-to-noise ratio (SNR). Experimental investigations were performed on a 6.1 m sea freight container with mockup dangerous materials in complex packing. Preliminary experimental results showed that the proposed technique was able to distinguish between liquids and solids, as well as detect contraband materials. Furthermore, a remarkable SNR of 400 was achieved in the measured digital X-ray images. The influence of temperature on X-ray radiation dose rate at different X-ray energies was also investigated. Finally, important applications of the proposed technique in the context of maritime security are discussed. KW - Nondestructive testing KW - NDT KW - Digital radiography KW - High-energy X-ray imaging KW - Betatron KW - Digital detector arrays KW - Container inspection KW - Contraband detection KW - Image quality KW - SNR PY - 2015 SN - 0025-5327 VL - 73 IS - 2 SP - 175 EP - 185 PB - Society for Nondestructive Testing CY - Columbus, Ohio AN - OPUS4-32521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolkoori, Sanjeevareddy A1 - Wrobel, Norma A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - A new X-ray backscatter imaging technique for non-destructive testing of aerospace materials JF - NDT & E international N2 - This paper presents a new X-ray backscatter technique (XBT) for non-destructive imaging of aerospace materials with only a single-sided access. It uses a special twisted slit collimator to inspect the whole object by changing the viewing direction of the X-ray backscatter camera. For the first time, the X-ray backscatter measurements were conducted using high-energy (>500 keV) X-ray sources. Experiments were performed on thick complex structured aluminium components, stringers and honeycomb structures to validate the applicability of the present technique to image small changes in the material properties and also to detect low-density material inclusions. In order to reduce the inspection time from hours to several seconds and to improve the image quality of the X-ray backscatter image, the backscattered signals were measured using a digital detector array with high spatial resolution (200 µm). The influence of the energy of the X-ray source and the slit width of the camera on the X-ray backscatter image were also investigated. In the proposed technique, the whole object is irradiated by an un-collimated X-ray beam resulting in a low image acquisition time of 3 min that facilitates the use of XBT for the real time NDT&E of aerospace materials. KW - X-ray backscatter imaging KW - Digital radiography KW - Digital detector array KW - Non-destructive evaluation KW - Aerospace applications PY - 2015 DO - https://doi.org/10.1016/j.ndteint.2014.09.008 SN - 0963-8695 VL - 70 SP - 41 EP - 52 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-32515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Osterloh, Kurt A1 - Hasenstab, Andreas A1 - Zscherpel, Uwe A1 - Goebbels, Jürgen A1 - Ewert, Uwe T1 - Non-Destructive Testing of Wood by Radiography T2 - Proceedings of MATEST 2005 N2 - Throughout human history, wood has been used for various purposes: for building shelters, houses and bridges, for manufacturing furniture and household or agricultural appliances (from ploughs to spoons), as burning material or simply as walking sticks. Contemporarily, vast amounts of wood are going into paper production. As a consequence, different qualities of wood are selected appropriately for the various applications. Beams incorporated into buildings and constructions have to be sturdy and durable; boards for furniture are supposed to be free of knots or are expected to have certain ornamental structures. As long as wood is not simply destined for burning it should be free of undesired knots or internal damages such as rot or worm holes. Particularly in cases of infestation with wood destroying fungi that definitely impairs mechanical strength and even may generate hollows such damages are frequently invisible from the outside. Radiographic methods are capable to detect internal damages as well as hidden knots without the need of drilling holes or cutting a specimen to pieces. The most thoroughly method to visualise the interior of a wooden specimen is tomography which shows annual growth rings in their complete circumference and all the knots or damages that might be included. However, some of them as well as patterns of annual rings suitable for dendrological investigations are recognisable with a less laborious method that might be applicable even in the field, i.e. contemporary digital radiography combined with image processing. Samples of lumber shall be presented showing the typical annual ring structures and some infested areas. T2 - MATEST 2005 CY - Opatija, Croatia DA - 2005-10-06 KW - NDT of wood KW - Quality of wood KW - Tomography KW - Presentation of spatial data KW - Digital radiography KW - Image processing KW - Noise KW - On-site radiography PY - 2005 SN - 953-7283-00-3 SP - 108 EP - 119 PB - Croatian Society of Non-Destructive Testing (CrSNDT) CY - Opatija AN - OPUS4-11865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rack, A. A1 - Rack, T. A1 - Stiller, M. A1 - Riesemeier, Heinrich A1 - Zabler, S. A1 - Nelson, K. T1 - In vitro synchrotron-based radiography of micro-gap formation at the implant-abutment interface of two-piece dental implants JF - Journal of synchrotron radiation N2 - Micro-gap formation at the implant-abutment interface of two-piece dental implants was investigated in vitro using high-resolution radiography in combination with hard X-ray synchrotron radiation. Images were taken with the specimen under different mechanical loads of up to 100 N. The aim of this investigation was to prove the existence of micro-gaps for implants with conical connections as well as to study the mechanical behavior of the mating zone of conical implants during loading. Synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in highly attenuating objects. The first illustration of a micro-gap which was previously indistinguishable by laboratory methods underlines that the complex micro-mechanical behavior of implants requires further in vitro investigations where synchrotron-based micro-imaging is one of the prerequisites. KW - X-ray imaging KW - Dental implants KW - Digital radiography KW - Implant-abutment interface PY - 2010 DO - https://doi.org/10.1107/S0909049510001834 SN - 0909-0495 SN - 1600-5775 VL - 17 IS - 2 SP - 289 EP - 294 PB - Blackwell Publishing CY - Oxford AN - OPUS4-22121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rack, T. A1 - Zabler, S. A1 - Rack, A. A1 - Riesemeier, Heinrich A1 - Nelson, K. T1 - An in vitro pilot study of the abutment stability during loading in virgin and fatigue-loaded conical dental implants using synchrotron-based radiography JF - The international journal of oral & maxillofacial implants N2 - Purpose: The implant-abutment connection of a two-piece dental implant exhibits complex micromechanical behavior. A microgap is evident at the implant-abutment interface, even in the virgin state, and its width varies when an external mechanical load is applied. Materials and Methods: This study used high-resolution synchrotron-based radiography in combination with hard x-ray phase-contrast mode to visualize this gap and estimate its size. Commercially available implants with different internal conical implant-abutment connections were imaged. Pairs of implants were imaged as manufactured (new) and after fatigue loading (5 million cycles up to 120 N). Then, different static loads were applied at different angles relative to the implant-abutment assemblies, and the implant-abutment microgaps were measured and compared. Results: Microgaps existed in all systems. Fatigue loading extended the size of the microgap and increased the possibility of micromovement of the implant-abutment complex. The cone angle of the connection also influenced the stability of the abutment, with flatter cones appearing to be more stable. Conclusion: Cyclic loading at medium force (120 N) induces plastic deformation of titanium implants and abutments. KW - Dental implants KW - Digital radiography KW - Phase-contrast microscopy KW - Synchrotron radiography KW - Titanium PY - 2013 DO - https://doi.org/10.11607/jomi.2748 SN - 0882-2786 SN - 1942-4434 VL - 28 IS - 1 SP - 44 EP - 50 PB - Quintessence Publ. Co. CY - Lombard, Ill. AN - OPUS4-30546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rack, T. A1 - Zabler, S. A1 - Rack, C. A1 - Stiller, M. A1 - Riesemeier, Heinrich A1 - Cecilia, A. A1 - Nelson, K. T1 - Coherent synchrotron-based micro-imaging employed for studies of micro-gap formation in dental implants T2 - 10th International conference on X-ray microscopy (AIP conference proceedings) N2 - Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process. T2 - 10th International conference on X-ray microscopy CY - Chicago, Illinois, USA DA - 15.08.2010 KW - X-ray imaging KW - Dental implants KW - Digital radiography KW - Implant-abutment interface KW - Synchrotron radiation KW - X-ray phase contrast PY - 2011 SN - 978-0-7354-0925-5 DO - https://doi.org/10.1063/1.3625398 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings VL - 1365 SP - 445 EP - 448 AN - OPUS4-25347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, David A1 - Antin, K.-N. A1 - Zscherpel, Uwe A1 - Vilaça, P. T1 - Application of different X-ray techniques to improve in-service carbon fiber reinforced rope inspection JF - Journal of Nondestructive Evaluation N2 - Carbon fiber reinforced polymer ropes are gaining in significance in the fields of civil engineering and hoisting applications. Thus, methods of non-destructive testing (NDT) need to be developed and evaluated with respect to new challenges and types of defects. Particularly important is the development of in-service testing solutions which allow the integration in global online monitoring systems. Conventional methods like electrical resistivity or strain measurements using optical fibers are already in use. This study investigates the possibility of using various X-ray techniques to increase the reliability and significance of NDT and their applicability to in-service testing. Conventional film radiography is the most common technique; however, even after image enhancement of the digitized film, this technique lacks contrast sensitivity and dynamic range compared to digital detector array (DDA) radiography. The DDA radiography is a highly sensitive method; yet, the limitation is that it delivers 2D images of 3D objects. By the use of co-planar translational laminography the detectability of planar defects is superior to 2D methods due to multiple projection angles. Apart from this, it can be used on-site due to a rather simple setup and robust equipment. In this work two photon counting detectors (PCD) with different sensor materials (Si and CdTe) were used. The results show that the resolution and defect recognition is lower in case of DDA radiography and laminography using PCDs compared to high-resolution computed tomography. However, the DDA radiography and laminography are sensitive enough to both fiber breakage and delaminations and can be significantly advantageous in terms of measurement time and adaptability for on-site monitoring. KW - X-ray imaging KW - Digital radiography KW - Co-planar translational laminography KW - Computed tomography KW - Photon counting detectors KW - Carbon fiber reinforced polymer KW - Rope PY - 2017 DO - https://doi.org/10.1007/s10921-017-0441-5 SN - 0195-9298 SN - 1573-4862 VL - 36 IS - 4 SP - Paper 62, 1 PB - Springer International Publishing AG CY - Cham, Switzerland AN - OPUS4-41781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, David A1 - Ewert, Uwe A1 - Zscherpel, Uwe T1 - Influencing parameters on image quality using photon counting detectors for laminography T2 - 7th European-American Workshop on Reliability of NDE, Proceedings N2 - Classical film radiography is a well-established NDT technique and it is most commonly used for testing weld seams and corroded pipes e.g. in oil and gas industry or in nuclear power plants. In the course of digitization, digital detector arrays (DDA) are finding their way into industrial applications and are replacing film radiography step by step. This study deals with the latest generation of DDAs, the photon counting and energy resolving detectors (PCD), and their characteristics compared to charge integrating detectors (CID). No matter which technology to use, radiography still lacks a general issue: A three-dimensional object is projected onto a two dimensional image. Of course, advanced computed tomography (CT) algorithms exist since many years, but if the object to investigate is too large to fit into the manipulation system or its shape is not appropriate, CT is not feasible or sensible to be applied. To overcome this limitation, numerous laminographic algorithms have been developed in the past. In this study, photon counting detectors are used in combination with co-planar translational laminography to gain reconstructed three-dimensional volumes. Both laminographic testing and PCDs require a serious knowledge of many parameters that can influence the image quality in the resulting datasets. These are e.g. the detector efficiency and calibration procedure, setting of energy thresholds, exposure data, number of projections, beam length correction and spatial resolution. The use of PCDs yields more variables to be considered compared to CIDs. The most important parameters in laminographic testing and in the use of PCDs are described in this study and limits are discussed. T2 - 7th European-American Workshop on Reliability of NDE CY - Potsdam, Germany DA - 05.09.2017 KW - X-ray imaging KW - Digital radiography KW - Co-planar translational laminography KW - Reliability KW - Photon counting detectors PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-428912 UR - http://www.nde-reliability.de/portals/nde17/BB/31.pdf SP - Paper 31, 1 EP - 11 AN - OPUS4-42891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Aktuelle Normungsaktivitäten in der industriellen Durchstrahlungsprüfung N2 - Neue Normen bei DIN, CEN ISO ASTM und IIW für die industrielle Durchstrahlungsprüfung mit Film und digitalen Detektoren. Stand der Technik und neue Entwicklungen T2 - Radiographie-Forum von Baker Hughes CY - Ahrensburg, Germany DA - 20.06.2018 KW - Wall thickness measurement KW - Aktuelle Normentwicklung KW - Schweißnahtprüfung KW - Digital radiography KW - Computed radiography (CR) KW - Digital Detector Array (DDA) KW - Tangential radiography KW - Image evaluation PY - 2018 AN - OPUS4-47354 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Ewert, Uwe A1 - Bavendiek, K. T1 - Possibilities and Limits of Digital Industrial Radiology: The new high contrast sensitivity technique - Examples and system theoretical analysis T2 - DIR 2007 - International Symposium on Digital Industrial Radiology and Computed Tomography (Proceedings) T2 - DIR 2007 - International Symposium on Digital industrial Radiology and Computed Tomography CY - Lyon, France DA - 2007-06-25 KW - Digital radiography KW - High contrast sensitivity technique KW - Digital detector arrays KW - NDT film systems KW - Computed Radiography (CR) with imaging plates KW - Film replacement KW - Image quality KW - Basic spatial resolution KW - Signal/noise ratio KW - Contrast sensitivity PY - 2007 IS - (Vortrag V1) SP - 1 EP - 17 CY - Lyon, France AN - OPUS4-16073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -