TY - CONF A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Flemig, Sabine A1 - Köllensperger, G. A1 - Rusz, M. A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - LA-ICP-MS study of Ag nanoparticle transport in a three-dimensional in vitro model N2 - We have applied laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with subcellular resolution as an elemental mass microscope to investigate the distributions of Ag nanoparticles (NP) in a 3-dimentional multicellular spheroid (MCS) model. The production of MCS has been optimized by changing the seeding cell number (500 to 40,000 cells) and the growth period (1 to 10 days). Incubations of MCS with Ag nanoparticle suspensions were performed with a concentration of 5 µg mL-1 for 24 hours. Thin-sections of the Eosin stained MCS were analysed by elemental mass microscopy using LA-ICP-MS to image distributions of 109Ag, 31P, 63Cu, 66Zn and 79Br. A calibration using NP suspensions was applied to convert the measured Ag intensity into the number of particles being present in each measurement pixel. The numbers of NP determined ranged from 30 up to 4,000 particles in an enrichment zone. The particle distribution was clearly correlated to 31P, 66Zn and 79Br and was localized in an outer rim of proliferating cells (confirmed by DAPI) with a width of about two-single cell diameters. For the highest seeding cell number NPs were only detected in this outer rim, whereas small molecules as for instance 79Br and 109Ag ions were detected in the core of the MCS as well. Aniline blue staining demonstrated that this outer rim was rich in collagen structures in which fibroblast cells were embedded and a thin-membrane was visible which separated the core from the biological active cell layer functioning as biological barriers for NP transport. In this presentation, we will show the possibility using this 3-dimensional model for toxicological and medical applications. T2 - European Winter Conference on Plasma Spectrochemistry EWCPS-2019 CY - Pau, France DA - 03.02.2019 KW - Laser ablation KW - ICP-MS KW - Nanoparticles KW - Cell KW - Multicellular spheroid PY - 2019 AN - OPUS4-47374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brüngel, R. A1 - Rückert, J. A1 - Wohlleben, W. A1 - Babick, F. A1 - Ghanem, A. A1 - Gaillard, C. A1 - Mech, A. A1 - Rauscher, H. A1 - Hodoroaba, Vasile-Dan A1 - Weigel, S. A1 - Friedrich, C. M. T1 - NanoDefiner e-Tool: An Implemented Decision Support Framework for Nanomaterial Identification JF - Materials N2 - The European Commission’s recommendation on the definition of nanomaterial (2011/696/EU) established an applicable standard for material categorization. However, manufacturers face regulatory challenges during registration of their products. Reliable categorization is difficult and requires considerable expertise in existing measurement techniques (MTs). Additionally, organizational complexity is increased as different authorities’ registration processes require distinct reporting. The NanoDefine project tackled these obstacles by providing the NanoDefiner e-tool: A decision support expert system for nanomaterial identification in a regulatory context. It providesMT recommendations for categorization of specific materials using a tiered approach (screening/confirmatory), and was constructed with experts from academia and industry to be extensible, interoperable, and adaptable for forthcoming revisions of the nanomaterial definition. An implemented MT-driven material categorization scheme allows detailed description. Its guided workflow is suitable for a variety of user groups. Direct feedback and explanation enable transparent decisions. Expert knowledge is Held in a knowledge base for representation of MT performance criteria and physicochemical particle type properties. Continuous revision ensured data quality and validity. Recommendations were validated by independent case studies on industry-relevant particulate materials. Besides supporting material identification and registration, the free and open-source e-tool may serve as template for other expert systems within the nanoscience domain. KW - EC nanomaterial definition KW - Decision support KW - Expert system KW - Nanomaterial KW - Nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492449 DO - https://doi.org/10.3390/ma12193247 VL - 12 IS - 19 SP - 3247 PB - MDPI CY - Basel, CH AN - OPUS4-49244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fletcher, D. C. A1 - Hunter, R. A1 - Xia, W. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Blackburn, E. A1 - Kulak, A. A1 - Xin, H. A1 - Schnepp, Z. T1 - Scalable synthesis of dispersible iron carbide (Fe3C) nanoparticles by ‘nanocasting’ JF - Journal of Materials Chemistry A N2 - Metal carbides have shown great promise in a wide range of applications due to their unique catalytic, electrocatalytic and magnetic properties. However, the scalable production of dispersible metal carbide nanoparticles remains a challenge. Here, we report a simple and scalable route to dispersible iron carbide (Fe3C) nanoparticles. This uses MgO nanoparticles as a removable ‘cast’ to synthesize Fe3C nanoparticles from Prussian blue (KFeIII[FeII(CN)6]). Electron tomography demonstrates how nanoparticles of the MgO cast encase the Fe3C nanoparticles to prevent sintering and agglomeration during the high-temperature synthesis. The MgO cast is readily removed with ethylenediaminetetraacetic acid (EDTA) to generate Fe3C nanoparticles that can be used to produce a colloidal ferrofluid or dispersed on a support material. KW - Small-angle scattering KW - SAXS KW - Metal carbides KW - Nanoparticles KW - Nanocasting PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486295 DO - https://doi.org/10.1039/C9TA06876G SN - 2050-7488 SN - 2050-7496 VL - 7 IS - 33 SP - 19506 EP - 19512 PB - Royal Society of Chemistry (RSC) AN - OPUS4-48629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaillard, C. A1 - Mech, A. A1 - Wohlleben, W. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Weigel, S. A1 - Rauscher, H. T1 - A technique-driven materials categorisation scheme to support regulatory identification of nanomaterials JF - Nanoscale Advances N2 - Worldwide there is a variety of regulatory provisions addressing nanomaterials. The identification as nanomaterial in a regulatory context often has the consequence that specific legal rules apply. In identifying nanomaterials, and to find out whether nanomaterial-specific provisions apply, the external size of particles is globally used as a criterion. For legal certainty, its assessment for regulatory purposes should be based on measurements and methods that are robust, fit for the purpose and ready to be accepted by different stakeholders and authorities. This should help to assure the safety of nanomaterials and at the same time facilitate their international trading. Therefore, we propose a categorisation scheme which is driven by the capabilities of common characterisation techniques for particle size measurement. Categorising materials according to this scheme takes into account the particle properties that are most important for a determination of their size. The categorisation is exemplified for the specific particle number based size metric of the European Commission's recommendation on the definition of nanomaterial, but it is applicable to other metrics as well. Matching the performance profiles of the measurement techniques with the material property profiles (i) allows selecting the most appropriate size determination technique for every type of material considered, (ii) enables proper identification of nanomaterials, and (iii) has the potential to be accepted by regulators, industry and consumers alike. Having such a scheme in place would facilitate the regulatory assessment of nanomaterials in regional legislation as well as in international relations between different regulatory regions assuring the safe trade of nanomaterials. KW - Nanomaterial KW - Nanoparticles KW - Categorisation scheme KW - EC definition of a nanomaterial KW - Regulatory identification of nanomaterials PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471623 DO - https://doi.org/10.1039/C8NA00175H SN - 2516-0230 SP - 1 EP - 11 PB - The Royal Society of Chemistry AN - OPUS4-47162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gea, M. A1 - Bonetta, S. A1 - Iannarelli, L. A1 - Giovannozzi, A. M. A1 - Maurino, V. A1 - Bonetta, S. A1 - Hodoroaba, Vasile-Dan A1 - Armato, C. A1 - Rossi, A. M. A1 - Schilirò, T. T1 - Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells JF - Food and Chemical Toxicology N2 - The aim of this study was to evaluate cytotoxicity (WST-1 assay), LDH release (LDH assay) and genotoxicity (Comet assay) of three engineered TiO2-NPs with different shapes (bipyramids, rods, platelets) in comparison with two commercial TiO2-NPs (P25, food grade). After NPs characterization (SEM/T-SEM and DLS), biological effects of NPs were assessed on BEAS-2B cells in presence/absence of light. The cellular uptake of NPs was analyzed using Raman spectroscopy. The cytotoxic effects were mostly slight. After light exposure, the largest cytotoxicity (WST-1 assay) was observed for rods; P25, bipyramids and platelets showed a similar effect; no effect was induced by food grade. No LDH release was detected, confirming the low effect on plasma membrane. Food grade and platelets induced direct genotoxicity while P25, food grade and platelets caused oxidative DNA damage. No genotoxic or oxidative damage was induced by bipyramids and rods. Biological effects were overall lower in darkness than after light exposure. Considering that only food grade, P25 and platelets (more agglomerated) were internalized by cells, the uptake resulted correlated with genotoxicity. In conclusion, cytotoxicity of NPs was low and affected by shape and light exposure, while genotoxicity was influenced by cellular-uptake and aggregation tendency. KW - Nanoparticles KW - Shape-engineered KW - Raman spectroscopy KW - Genotoxic and oxidative damage KW - Cytotoxicity PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0278691519301036?via%3Dihub DO - https://doi.org/10.1016/j.fct.2019.02.043 SN - 0278-6915 SN - 1873-6351 VL - 127 SP - 89 EP - 100 PB - Elsevier AN - OPUS4-47532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. A1 - Homann, C. T1 - Progress report NaYF4:Yb,Er upconversion nanoparticles: determination of energy loss processes for the systematic enhancement of the luminescence efficiency N2 - A report on the progress of the PhD work on upconversion nanoparticles is given, showing lifetimes and quantum yields of single- and co-doped Yb,Er nanocrystals with and without inert shell. T2 - Arbeitsgruppenseminar Prof. Oliver Benson CY - Berlin, Germany DA - 23.10.2019 KW - Upconversion KW - Spectroscopy KW - Nanoparticles KW - Lifetime PY - 2019 AN - OPUS4-49754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - 31. Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles for catalysis N2 - We present the synthesis of monodisperse monometallic Ni nanoparticles (NPs) and bimetallic NiCu respectively NiCo NPs. The NPs were investigated using SAXS, STEM, EDX, and XANES, showing that the NPs are size tunable and stable while the surface is not entirely covered. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4. T2 - 11th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 04.12.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NPs) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative microstructural analysis - VAMAS/TWA 37 N2 - The 44th Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee has just taken place at NIST in Boulder (CO, USA). BAM participates with significant contributions in Technical Working Areas on nanoparticle and surface chemistry characterization, but also has positioned itself to new global material challenges and trends in the developement of advanced materials and their characterization, such as thermal properties, self-healing materials, and micro- and nanoplastic. T2 - Annual Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee CY - Boulder, CO, USA DA - 22.05.2019 KW - VAMAS KW - Nanoparticles KW - Microbeam analysis KW - Advanced materials PY - 2019 AN - OPUS4-48184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartzcak, D. T1 - New reference material candidates for traceable size measurement of nonspherical nanoparticles N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Nanoparticles KW - Size distribution KW - Electron microscopy KW - Certified reference materials KW - Traceability PY - 2019 AN - OPUS4-49227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. T1 - New reference material candidates for traceable size measurement of non-spherical nanoparticles N2 - New model nanoparticles with well-controlled shape were synthesized within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. Their systematic characterization takes place by the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following reference nanoparticle candidates are under investigation with respect to their homogeneity and stability: titania nanoplatelets (10-15 nm x 50-100 nm), titania bipyramides (~60 nm x 40 nm), titania acicular particles (100 nm x 15-20 nm; aspect ratio 5.5/6), gold nanorods (~10 nm x 30 nm), and gold nanocubes (~55 nm x 55 nm x 55 nm). T2 - HyMET Workshop on optical surface analysis methods for nanostructured layers CY - Berlin, Germany DA - 10.10.2019 KW - Nanoparticles KW - Reference materials KW - Traceability KW - Particle size distribution PY - 2019 AN - OPUS4-49285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. T1 - Towards accurate analysis of particle size distribution for non-spherically shaped nanoparticles as quality control materials N2 - Measurement of nanoparticle size (distribution) becomes a challenging analytical problem when non-spherical nanoparticles must be accurately measured. Most industrial nanoparticles have not only non-spherical shapes but also possess polydisperse size distributions, and due to their agglomeration/aggregation state are difficult (or even impossible) to be addressed individually. Moreover, driven by regulatory purposes related to the identification of a material as a nanomaterial, the accurate measurement of the smallest dimension of a (nano)particulate material makes the analysis even more complex. In the first phase of the EU Project nPSize - Improved traceability chain of nanoparticle size measurements (https://www.bam.de/Content/DE/Projekte/laufend/nPSize/npsize.html), the efforts are focused on synthesis of nanoparticles of well-defined, non-spherical shape. Following candidates of reference materials (CRM) with certifiable particle size (distribution) are under characterization with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-60 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - Nanoparticles KW - Reference materials KW - Traceability KW - Non-spherical shape KW - Titanium dioxide PY - 2019 AN - OPUS4-48671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Surface and Microbeam Analytical Methods @BAM N2 - An overview of the activities in the field of surface and microbeam analysis at BAM-6.1 is given with focus on physico-chemical characterization at the nanoscale. Ideas of potential joint activities are presented: structural and chemical analysis of graphene, deposition techniques for nanoparticles, EBSD on steel for a broader range of methods, instruments and types of steel, soft X-ray Analysis of low-Z materials, analysis of mesoporous thin films, etc. T2 - BAM-IFW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - PC characterisation KW - Nanoscale KW - Nanoparticles PY - 2019 AN - OPUS4-47860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study T2 - PTB-Bericht F-61 - NanoWorkshop 2018: Workshop on Reference Nanomaterials N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with Errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal, has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. In the TEM micrograph the particles tracked manually according to the measurement protocol. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - Titanium dioxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy PY - 2019 SN - 978-3-95606-440-1 DO - https://doi.org/https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 245 EP - 255 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan T1 - Considerations for nanomaterial identification of powders using volume-specific surface area method N2 - The EC’s recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. However, it has been recently demonstrated that the implementation of this definition for regulatory purposes is conditioned by the large deviations between the results obtained by different sizing methods or due to practical reasons such as high costs and time-consuming. For most measurement methods for particle size determination it is necessary to initially disperse the particles in a suitable liquid. However, as the particle size decreases, the adhesion forces increase strongly, making it more difficult to deagglomerate the particles and to assess accurately the result of this process. Therefore, the success of the deagglomeration process substantially determines the measurement uncertainty and hence, the comparability between different methods. Many common methods such as dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS) or ultrasound attenuation spectroscopy (US) can give good comparable results for the size of nanoparticles, if they are properly separated and stabilized (e.g. in reference suspensions). In order to avoid the use of hardly available and expensive methods such as SEM / TEM for all powders, an agglomeration-tolerant screening method is useful. One of the measurement methods well suited to probe the size of particulate powder is the determination of the volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nano- or non-nanomaterial. The identification of a nanomaterial by VSSA method is accepted by the EU recommendation. However, the application of the VSSA method was associated also with some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape, so that it changes considerably with the number of nano-dimensions, but also with the degree of sphericity of the particles. For particles containing micro-pores or having a microporous coating, false positive results are induced. Furthermore, broad particle size distributions made necessary to additionally correct the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach was tested in relation with SEM and TEM measurements. The introduction of a correction term for deviations from sphericity and further additions improved the applicability of VSSA as a screening method. T2 - Partec CY - Nuremberg, Germany DA - 09.04.2019 KW - VSSA KW - Nanoparticles PY - 2019 AN - OPUS4-47874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kunz, Valentin T1 - Surface chemical transformations of nanoparticles N2 - Nanomaterials are a relatively new class of materials for which a regulatory framework still has to be established and regulators require comprehensive datasets of well characterized nanomaterials for the implementation. Especially information about the surface chemistry of nanoparticles is crucial, since it largely determines their biological and environmental fate. How the surface chemistry changes under relevant ageing conditions is of particular interest, because exposure will normally occur not to the pristine material but to a nanoform that underwent some kind of transformation. In this talk, first a short overview about the contributions of division 6.1 to multiple European-funded projects will be presented, in which surface analytical techniques are used to improve the physical-chemical characterization of nanomaterials. Secondly, a study investigating the surface-chemical transformations of a representative set of titanium dioxide nanoparticles is discussed in more detail. The ageing has partly been performed at the BAM division 7.5, and the surface chemistry was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). By analyzing the complex mass spectra with principal component analysis (PCA), it was possible to identify even subtle changes that occur upon ageing. T2 - Abteilungsseminar CY - BAM, Berlin, Germany DA - 25.2.2019 KW - Nanoparticles KW - Surface Chemistry KW - Ageing KW - Titanium Dioxide KW - ToF-SIMS PY - 2019 AN - OPUS4-47444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Hodoroaba, Vasile-Dan T1 - Towards accurate analysis of particle size distribution for non-spherically shaped nanoparticles as quality control materials JF - Microscopy and Microanalysis N2 - Most industrial nanoparticles have non-spherical shapes and also possess polydisperse size distributions, and due to their agglomeration/ aggregation state are difficult (or even impossible) to be addressed individually. Further, driven by regulatory purposes related to the identification of a material as a nanomaterial, the accurate measurement of the smallest dimension of a (nano)particulate material makes the analysis even more complex. In the first phase of the EU Project nPSize - Improved traceability chain of nanoparticle size measurements (https://www.bam.de/Content/DE/Projekte/laufend/nPSize/npsize.html), the efforts are focused on synthesis of nanoparticles of well-defined, non-spherical shape. Following candidates of reference materials (CRM) with certifiable particle size (distribution) are under characterization with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-60 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). KW - Nanoparticles KW - Imaging KW - Non-spherical KW - Reference material KW - Particle size distribution PY - 2019 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/towards-accurate-analysis-of-particle-size-distribution-for-nonspherically-shaped-nanoparticles-as-quality-control-materials/CD48E9298865410124E22837D8CF73A0 DO - https://doi.org/10.1017/S1431927619012376 SN - 1431-9276 SN - 1435-8115 VL - 25 IS - Suppl. 2 SP - 2328 EP - 2329 PB - Cambridge University Press AN - OPUS4-48856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Modena, Mario M. A1 - Rühle, Bastian A1 - Burg, Thomas P. A1 - Wuttke, Steffan T1 - Nanoparticle characterization: What to measure? JF - Advanced Materials N2 - What to measure? is a key question in nanoscience, and it is not straightforward to address as different physicochemical properties define a nanoparticle sample. Most prominent among these properties are size, shape, surface charge, and porosity. Today researchers have an unprecedented variety of measurement techniques at their disposal to assign precise numerical values to those parameters. However, methods based on different physical principles probe different aspects, not only of the particles themselves, but also of their preparation history and their environment at the time of measurement. Understanding these connections can be of great value for interpreting characterization results and ultimately controlling the nanoparticle structure–function relationship. Here, the current techniques that enable the precise measurement of these fundamental nanoparticle properties are presented and their practical advantages and disadvantages are discussed. Some recommendations of how the physicochemical parameters of nanoparticles should be investigated and how to fully characterize these properties in different environments according to the intended nanoparticle use are proposed. The intention is to improve comparability of nanoparticle properties and performance to ensure the successful transfer of scientific knowledge to industrial real‐world applications. KW - Nanoparticle characterization KW - Nanoparticles KW - Porosity KW - Shape KW - Size PY - 2019 DO - https://doi.org/10.1002/adma.201901556 SN - 0935-9648 SN - 1521-4095 VL - 31 IS - 32 SP - 1901556, 1 EP - 26 PB - Wiley AN - OPUS4-49129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Sordello, F. A1 - Mino, L. A1 - Minero, C. A1 - Hodoroaba, Vasile-Dan A1 - Martra, G. A1 - Maurino, V. T1 - Formic acid photoreforming for hydrogen production on shape-controlled anatase TiO2 nanoparticles: Assessment of the role of fluorides, {101}/{001} surfaces ratio, and platinization JF - ACS Catalysis N2 - Hydrogen production via formate photoreforming on TiO2 is characterized by marked dependence on the ratio between {101} and {001} surfaces for anatase nanoparticles. We observed higher rates of hydrogen Evolution with the increase of the {101} facets presence, owing to their reductive nature. This helps the Pt photodeposition in the early stages of Irradiation and, then, the hydrogen ion reduction reaction. The selective photodeposition of 2 nm Pt nanoparticles on {101} facets was confirmed by transmission electron microscopy (TEM) micrographs. The results are confirmed also by experiments carried out without the use of Pt as cocatalyst and by photoelectrochemical measurements. The work also explains the marginal effect of the fluorination on the H2 evolution. KW - Titanium dioxide KW - Fluoride KW - Platinum KW - Nanoparticles KW - Controlled-shape KW - Hydrogen photoproduction KW - Surface PY - 2019 UR - https://pubs.acs.org/doi/10.1021/acscatal.9b01861 DO - https://doi.org/10.1021/acscatal.9b01861 SN - 2155-5435 VL - 9 IS - 8 SP - 6692 EP - 6697 PB - ACS Publications AN - OPUS4-48355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Müller, Anja T1 - Introduction to photoelectronspectroscopy N2 - A short introduction to XPS/ESCA with the focus on nanoparticles and the preparation of such particles for the measurements T2 - Meeting of ACE Nano CY - Berlin, Germany DA - 18.02.2019 KW - ESCA/XPS KW - Nanoparticles KW - Preparation PY - 2019 AN - OPUS4-47437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rohner, C. A1 - Braun, Ulrike A1 - Schlögl, R. A1 - Lunkenbein, T. T1 - Electron beam induced amorphisation of polypropylene particles N2 - Untersuchung von Polypropylen Nanopartikeln mittels REM. Es wird die Hypothese aufgestellt, dass mit der Paarverteilungsfunktion auf den Alterunszustand geschlossen werden kann. N2 - Analysis of polypropylene nanoparticles with scanning elektron spectroscopy (SEM). The poster describes the hypothesis that the pair distribution function determined by SEM can be used to deduce the state of polymer age. T2 - Microscopy characterisation of organic-inorganic interfaces 2019 CY - Berlin, Germany DA - 07.03.2019 KW - Nanopartikel KW - Mikroplastik-Analytik KW - Paarverteilungsfunktion KW - Pair distribution function KW - Nanoparticles KW - Microplastic analysis PY - 2019 AN - OPUS4-47890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Nirmalananthan-Budau, Nithiya A1 - Roloff, Alexander A1 - Resch-Genger, Ute T1 - Surface Functional Group Quantification on Micro- and Nanoparticles N2 - Organic and inorganic micro- and nanoparticles are increasingly used as drug carriers, fluorescent sensors, and multimodal labels in the life and material sciences. Typically, these applications require further functionalization of the particles with, e.g., antifouling ligands, targeting bioligands, stimuli-responjsive caps, or sensor molecules. Besides serving as an anchor point for subsequent functionalization, the surface chemistry of these particles also fundamentally influences their interaction with the surrounding medium and can have a significant effect on colloidal stability, particle uptake, biodistribution, and particle toxicity in biological systems. Moreover, functional groups enable size control and tuning of the surface during the synthesis of particle systems. For these reasons, a precise knowledge of the chemical nature, the total number of surface groups, and the number of groups on the particle surface that are accessible for further functionalization is highly important. In this contribution, we will will discuss the advantages and limitiations of different approaches to quantify the amount of commonly used surface functional groups such as amino,[1,2] carboxy,[1,2] and aldehyde groups.[3] Preferably, the quantification is carried out using sensitive and fast photometric or fluorometric assays, which can be read out with simple, inexpensive instrumentation and can be validated by complimentary analytic techniques such as ICP-OES and quantitative NMR. T2 - NANAX Hamburg CY - Hamburg, Germany DA - 16.09.2019 KW - Microparticles KW - Nanoparticles KW - Quantitative Analysis KW - Surface KW - Funtional Groups PY - 2019 AN - OPUS4-49616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - In-situ SAXS/WAXS investigation of zinc oxide nanotube formation N2 - Zinc oxide nanostructures possess optical properties that are dependent on particle shape and size. Here, we report on the synthesis of elongated zinc oxide tubes via the in-situ aggregation of spherical particles. Using a custom-built, lab-based instrument, x-ray scattering can be investigated over more than three decades in scattering vector q, allowing for a complete investigation from atomic distances up to larger-than-nano structures. For this study, the hydrolytic synthesis of stearate stabilized zinc oxide nanostructures in tetrahydrofuran was performed and the reaction mixture was continuously fed through the SAXS/WAXS apparatus by means of a peristaltic pump. For comparison to nanospheres, oleate-functionalized zinc oxide particles were synthesized in a microwave-assisted fashion, and depending on reaction temperature, sphere radii could be adjusted between 2.6 and 3.8 nm, changing the optical and crystal lattice properties. The evaluation of the in-situ measurements showed that at the beginning of the synthesis of the stearate-stabilized zinc oxide, similar, spherical particles are formed as in the oleate-based synthesis. In contrast, as the reaction progresses, the stearate-capped particles aggregate into elongated rods with radii of a few nanometres, which eventually form the nanotubes. These have radii of 30-50 nm and lengths of several hundred nanometres. Nevertheless, these structures still possess optical properties like the ultra-small zinc oxide spheres, i.e. a bright, yellow fluorescence. Therefore, we assume that the originally formed, ultra-small spheres, are still present within the tube structure, but separated by stearate, and thus determine their fluorescence properties. T2 - SAXS excites CY - Graz, Austria DA - 24.09.2019 KW - SAXS KW - Zinc oxide KW - Nanoparticles PY - 2019 AN - OPUS4-49135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Microwave-Assisted Synthesis of Ultrasmall Zinc Oxide Nanoparticles JF - Langmuir N2 - We report on ultrasmall zinc oxide single-crystalline nanoparticles of narrow size distribution and long-term colloidal stability. These oleate-stabilized nanoparticles were synthesized using microwave-assisted synthesis for 5 min, corresponding to a 99% decrease in synthesis time, when compared to the conventional synthesis method. It was observed that the average particle radius increases from 2.6 ± 0.1 to 3.8 ± 0.1 nm upon increasing synthesis temperature from 125 to 200 °C. This change also corresponded to observed changes in the optical band gap and the fluorescence energy of the particles, from 3.44 ± 0.01 to 3.36 ± 0.01 eV and from 2.20 ± 0.01 to 2.04 ± 0.01 eV, respectively. Small-angle X-ray scattering, dynamic light scattering, and UV–vis and fluorescence spectroscopy were employed for particle characterization. Debye–Scherrer analysis of the X-ray diffraction (XRD) pattern reveals a linear increase of the crystallite size with synthesis temperature. The consideration of the convolution of a Lorentz function with a Gaussian function for data correction of the instrumental peak broadening has a considerable influence on the values for the crystallite size. Williamson–Hall XRD analyses in the form of the uniform deformation model, uniform stress deformation model, and uniform deformation energy density model revealed a substantial increase of strain, stress, and deformation energy density of the crystallites with decreasing size. Exponential and power law models were utilized for quantification of strain, stress, and deformation energy density. KW - SAXS KW - Zinc oxide KW - Microwave synthesis KW - Nanoparticles PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.9b01921 SN - 0743-7463 VL - 35 IS - 38 SP - 12469 EP - 12482 PB - American Chemical Society CY - Washington, D.C., USA AN - OPUS4-49136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sarhan, R. M. A1 - Koopman, W. A1 - Schuetz, R. A1 - Schmid, Thomas A1 - Liebig, F. A1 - Koetz, J. A1 - Bargheer, M. T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol JF - Scientific Reports N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. KW - Nanoparticles KW - Plasmonic heating KW - Raman spectroscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475140 DO - https://doi.org/10.1038/s41598-019-38627-2 SN - 2045-2322 VL - 9 IS - 1 SP - 3060, 1 EP - 8 PB - Nature Publishing Group AN - OPUS4-47514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation crosslinking – An efficient method for the oriented immobilization of antibodies T2 - Preprints N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein G KW - Protein A KW - Immunoprecipitation KW - Immunocapture KW - Stabilization KW - Biosensor KW - Biochip KW - Microarray KW - ELISA KW - Immunoassay KW - Immunosensor KW - Crosslinker KW - Nanoparticles KW - Click chemistry KW - Herceptin KW - Trastuzumab PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478797 DO - https://doi.org/10.20944/preprints201904.0205.v1 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinhoff, U. A1 - Hodoroaba, Vasile-Dan T1 - EMPIR Erläuterung der Fördermaßnahme und Beispiele aus der Nanotechnologie N2 - Das EMPIR-Förderprogramm wird kurz erläutert und laufende Projekte aus der Nanotechnologie werden vorgestellt. Der Schwerpunkt liegt auf Standardisierungsprojekten, die gemeinsam mit ISO/TC 229 'Nanotechnologies' und CEN/TC 352 'Nanotechnologies' zu neuen Normen führen sollten. Als Beispiel für laufende Nanotechnologie-Projekte mit Koordination aus Deutschland werden MagNaStand (PTB) und nPSize (BAM) gegeben. T2 - Treffen des Normungsausschusses NA 062-08-17 AA Nanotechnologien CY - KIT, Karlsruhe, Germany DA - 07.03.2019 KW - EMPIR KW - Nanoparticles KW - Reference materials KW - Particle size distribution KW - Traceability KW - Standardisation PY - 2019 AN - OPUS4-47859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Müller, L. A1 - Wanka, Antje A1 - Hösl, S. A1 - Ascher, Lena A1 - Cruz-Alonso, M. A1 - Pisonero, J. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Imaging of biological samples by LA-ICP-MS N2 - In recent years, elemental imaging of biological samples like tissue thin sections using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining more and more importance. Improvements concerning spatial resolution as well as signal-to-background ratio due to low-dispersion sample chambers make LA-ICP-MS also interesting for single cell analysis. To evaluate the interaction of nanoparticles (NPs) with cells LA-ICP-MS was applied for the imaging of individual cells. Our findings show, that NP aggregates can be localized within cellular compartments. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures (size, chemical composition, surface modification), as well as on the incubation conditions (concentration, time). Moreover, LA-ICP-MS is increasingly becoming an important complementary technique in bioanalysis by using element-tagging strategies to determine biomolecules indirectly. Based on the specific binding between antibodies and their corresponding antigens, proteins and peptides can be detected in tissue or cells using tagged antibodies. As artificial tags metal chelates loaded with lanthanides, polymer-based elemental tags or metal-containing nanoparticles can be used. Thereby LA-ICP-MS is a sensitive detection tool for multiplexed immuno-histochemistry of tissue and cell samples. Our results demonstrate the potential of LA-ICP-MS to investigate the distribution of naturally occurring elements, administered agents as well as biomolecules by using metal-tagged antibodies. T2 - Workshop on tandem LIBS/LA-ICP-MS 2019 CY - Berlin, Germany DA - 18.11.2019 KW - Laser ablation KW - ICP-MS KW - Nanoparticles KW - Imaging PY - 2019 AN - OPUS4-49704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Müller, Anja A1 - Heinrich, Thomas A1 - Kunz, Valentin A1 - Nymark, P. A1 - Radnik, Jörg T1 - Chemical characterization of nanoparticles by PCA-assisted ToF-SIMS: a) Core-shell character, b) transformation and c) grouping studies N2 - This talk was given within the scope of the SIMS-22 conference in October 2019 in Kyoto (Japan). It deals with the surface analytical investigation of nanoparticles by PCS-assisted ToF-SIMS. This technique is applicable to core-shell nanoparticles, in order to distinguish a complete encapsulation from an incomplete encapsulation of the core by the shell material. Furthermore, the depletion process of organic nanoparticle coatings caused by UV-weathering is investigated. Finally, the significance of grouping studies for nanomaterials research and risk assessment is demonstrated. T2 - The 22nd International Conference on Secondary Ion Mass Spectrometry (SIMS-22) CY - Kyoto, Japan DA - 20.10.2019 KW - Nanoparticles KW - ToF-SIMS KW - Principal component analysis (PCA) PY - 2019 AN - OPUS4-50075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yadav, Anur A1 - Iost, R. M. A1 - Neubert, T. J. A1 - Baylan, S. A1 - Schmid, Thomas A1 - Balasubramanian, Kannan T1 - Selective electrochemical functionalization of the graphene edge JF - Chemical Science N2 - We present a versatile and simple method using electrochemistry for the exclusive functionalization of the edge of a graphene monolayer with metal nanoparticles or polymeric amino groups. The attachment of metal nanoparticles allows us to exploit surface-enhanced Raman scattering to characterize the chemistry of both the pristine and the functionalized graphene edge. For the pristine patterned graphene edge, we observe the typical edge-related modes, while for the functionalized graphene edge we identify the chemical structure of the functional layer by vibrational fingerprinting. The ability to obtain single selectively functionalized graphene edges routinely on an insulating substrate opens an avenue for exploring the effect of edge chemistry on graphene properties systematically. KW - Graphene KW - Nanoparticles KW - Nanosciences KW - Surface-enhanced Raman scattering KW - Atomic force microscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474357 DO - https://doi.org/10.1039/C8SC04083D SN - 2041-6520 VL - 10 IS - 3 SP - 936 EP - 942 PB - Royal Society of Chemistry AN - OPUS4-47435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -