TY - JOUR A1 - Ferrero, Fabio A1 - Lohrer, Christian A1 - Schmidt, Bernd A1 - Noll, Matthias A1 - Malow, Marcus T1 - A mathematical model to predict the heating-up of large-scale wood piles N2 - A mathematical model to predict the heating-up in open air wood chip piles has been developed. This model includes the heat production from chemical, physical and microbial exothermal processes. In the manuscript the laboratory experiments needed to develop and validate the model are described. In addition, temperature and gas concentrations were measured in two large-scale wood piles (volumes bigger than 1000 m³), in order to provide the applicability of the model to large-scale scenarios. The predictions of the model and the large-scale experimental data showed good agreement concerning the maximum temperature reached inside an open air wood pile. Special attention has been devoted to the microbial processes, since they proved to be the most important cause of heat production in the early stages of storage. This work is intended to help in predicting and thus avoiding possible self-ignition scenarios for this type of wood storage. KW - Wood chips KW - Storage KW - Self-ignition KW - Numerical simulation KW - Large-scale piles KW - Biomass PY - 2009 DO - https://doi.org/10.1016/j.jlp.2009.02.009 SN - 0950-4230 SN - 1873-3352 VL - 22 SP - 450 EP - 459 PB - Butterworth CY - Guildford, Surrey AN - OPUS4-19200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stratulat, C. A1 - Ginghina, R. E. A1 - Bratu, A. E. A1 - Isleyen, A. A1 - Tunc, M. A1 - Hafner-Vuk, K. A1 - Frey, A. M. A1 - Kjeldsen, H. A1 - Vogl, Jochen T1 - Development- and Validation-Improved Metrological Methods for the Determination of Inorganic Impurities and Ash Content from Biofuels N2 - In this study, five laboratories, namely, BRML (Romania), TUBITAK UME (Turkey), IMBIH (Bosnia and Herzegovina), BAM (Germany), and DTI (Denmark), developed and validated analytical procedures by ICP-MS, ICP-OES, MWP-AES, WD-XRF, and ID-MS for the determination of inorganic impurities in solid and liquid biofuels, established the budget of uncertainties, and developed the method for determining the amount of ash in the measurement range 0–1.2% with absolute repeatability less than 0.1% and absolute reproducibility of 0.2% (according to EN ISO 18122). In order to create homogeneous certified reference materials, improved methodologies for the measurement and characterization of solid and liquid biofuels were developed. Thus, information regarding the precision, accuracy, and bias of the method, and identifying the factors that intervened in the measurement of uncertainty were experimentally determined, supplementing the information from the existing standards in the field. KW - Development KW - Validate method KW - Biodiesel KW - ICP-MS KW - ICP-OES KW - MW-AES KW - WD-XRF KW - ID-MS KW - Inorganic impurities KW - Ash content KW - Wood chips PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578743 DO - https://doi.org/10.3390/en16135221 VL - 16 IS - 13 SP - 1 EP - 14 PB - MDPI AN - OPUS4-57874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -