TY - JOUR A1 - Lenz, J. A1 - Pospiech, D. A1 - Paven, M. A1 - Albach, R. W. A1 - Günther, Martin A1 - Schartel, Bernhard A1 - Voit, B. T1 - Improving the Flame Retardance of Polyisocyanurate Foams by Dibenzo[d,f][1,3,2]dioxaphosphepine 6-Oxide-Containing Additives JF - Polymers N2 - A series of new flame retardants (FR) based on dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO) incorporating acrylates and benzoquinone were developed previously. In this study, we examine the fire behavior of the new flame retardants in polyisocyanurate (PIR) foams. The foam characteristics, thermal decomposition, and fire behavior are investigated. The fire properties of the foams containing BPPO-based derivatives were found to depend on the chemical structure of the substituents. We also compare our results to state-of-the-art non-halogenated FR such as triphenylphosphate and chemically similar phosphinate, i.e. 9,10-dihydro-9-oxa-10- phosphaphenanthrene-10-oxide (DOPO), based derivatives to discuss the role of the phosphorus oxidation state. KW - Polyisocyanurate KW - Dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide KW - Phospha-Michael addition KW - Flame retardant KW - Foams PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485590 DO - https://doi.org/10.3390/polym11081242 SN - 2073-4360 VL - 11 IS - 8 SP - Article 1242 PB - MDPI AN - OPUS4-48559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lorenzetti, Alessandra A1 - Dittrich, Bettina A1 - Schartel, Bernhard A1 - Roso, M A1 - Modesti, M T1 - Expandable graphite in polyurethane foams: The effect of expansion volume and intercalants on flame retardancy JF - Journal of Applied Polymer Science N2 - Several expandable graphites (EGs), differing in Expansion volume but with the same mean size, are compared as flame retardants in polyurethane (PUR) foams. Not only common sulfur-intercalated graphites are investigated but also a new one intercalated with phosphorus. The main aim of this article is to understand which properties of EG are important for its flame retardancy effectiveness in PUR foams. Thermal stability, flammability, and fire behavior are analyzed through limiting oxygen index and cone calorimeter tests. Detailed characterization of the phosphorus-intercalated graphite is also provided as well as physical–mechanical characterization. The results show that the well-known sulfur-intercalated graphites and the one with phosphorus both enhance the residue yield, induce a protective layer, and thus efficiently flame-retard PUR foams. While the expansion volume of the EGs had a surprisingly limited influence on the performance of the foams, at least in the range tested, the most important feature Controlling the effectiveness of EG in terms of flame retardant PUR foams was the type of intercalant. The presence of EG affected the physical–mechanical properties of the foams; however, no significant effect of the expansion volume or intercalant type has been revealed on the physical–mechanical properties of the foams. KW - Degradation KW - Flame retardance KW - Foams KW - Polyurethane KW - Thermogravimetric analysis PY - 2017 DO - https://doi.org/10.1002/app.45173 SN - 1097-4628 SN - 0021-8995 VL - 134 IS - 31 SP - Article 45173, 1 EP - 8 PB - Wiley AN - OPUS4-40606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -