TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction JF - Zeitschrift für anorganische und allgemeine Chemie N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracenecarboxylic Acid with two Dipyridines Coformers JF - Crystals N2 - Tuning and controlling the solid-state photophysical properties of organic luminophore are very important to develop next-generation organic luminescent materials. With the aim of discovering new functional luminescent materials, new cocrystals of 9-anthracene carboxylic acid (ACA) were prepared with two different dipyridine coformers: 1,2-bis(4-pyridyl)ethylene and 1,2-bis(4-pyridyl)ethane. The cocrystals were successfully obtained by both mechanochemical approaches and conventional solvent crystallization. The newly obtained crystalline solids were characterized thoroughly using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. Structural analysis revealed that the cocrystals are isostructural, exhibiting two-fold interpenetrated hydrogen bonded networks. While the O–H···N hydrogen bonds adopts a primary role in the stabilization of the cocrystal phases, the C–H···O hydrogen bonding interactions appear to play a significant role in guiding the three-dimensional assembly. Both π···π and C–H···π interactions assist in stabilizing the interpenetrated structure. The photoluminescence properties of both the starting materials and cocrystals were examined in their solid states. All the cocrystals display tunable photophysical properties as compared to pure ACA. Density functional theory simulations suggest that the modified optical properties result from charge transfers between the ACA and coformer molecules in each case. This study demonstrates the potential of crystal engineering to design solid-state luminescence switching materials through cocrystallization. KW - Cocrystal KW - Mechanochemical synthesis KW - Luminescence KW - X-ray diffraction KW - DFT calculation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518226 DO - https://doi.org/10.3390/cryst10100889 VL - 10 IS - 10 SP - 889 PB - MDPI AN - OPUS4-51822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Olivera, Paulo A1 - Michalchuk, Adam A1 - de Oliveira Guilherme Buzanich, Ana A1 - Bienert, Ralf A1 - Torresi, R. A1 - Camargo, P. A1 - Emmerling, Franziska T1 - Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis JF - ChemComm N2 - Current time-resolved in situ approaches limit the scope of mechanochemical investigations possible. Here we develop a new, general approach to simultaneously follow the evolution of bulk atomic and electronic structure during a mechanochemical synthesis. This is achieved by coupling two complementary synchrotron-based X-ray methods: X-ray absorption spectroscopy (XAS) and X-ray diffraction. We apply this method to investigate the bottom-up mechanosynthesis of technologically important Au micro and nanoparticles in the presence of three different reducing agents, hydroquinone, sodium citrate, and NaBH4. Moreover, we show how XAS offers new insight into the early stage generation of growth species (e.g. monomers and clusters), which lead to the subsequent formation of nanoparticles. These processes are beyond the detection capabilities of diffraction methods. This combined X-ray approach paves the way to new directions in mechanochemical research of advanced electronic materials. KW - Mechanochemistry KW - XANES KW - X-ray diffraction KW - Nano particles PY - 2020 DO - https://doi.org/10.1039/d0cc03862h SN - 1364-548X VL - 56 SP - 10329 EP - 10332 PB - Royal Society of Chemistry AN - OPUS4-51760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Kropf, H. A1 - Duarte, J. A1 - Cakir, Cafer Tufan A1 - Dubois, F. A1 - Többens, D. A1 - Glatzel, U. T1 - Temperature evolution of lattice misfit in Hf and Mo variations of the Al 10 Co 25 Cr 8 Fe 15 Ni 36 Ti 6 compositionally complex alloy JF - Scripta Materialia N2 - Misfits of γ- γ’ based Al10Co25Cr8Fe15Ni36Ti6 and its Mo- and Hf-variations are studied up to a temperature of 980 °C and compared with Ni- and Co-based superalloys. The trace elements decrease (Hf) or increase (Mo) the edge radii of the γ’ cuboids without changing their sizes. Atom probe measurements revealed that the Hf alloy prefers the γ’ phase while Mo prefers the γ matrix, leading to a lattice parameters enhancement of both phases, as could be revealed by synchrotron X-ray diffraction. The misfit is influenced in opposite ways: Hf increases the positive misfit, while Mo reduces it at all investigated temperatures. KW - Metal and alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Atom probe tomography KW - High entropy alloy PY - 2020 DO - https://doi.org/10.1016/j.scriptamat.2020.07.013 VL - 188 SP - 74 EP - 79 PB - Elsevier Ltd. AN - OPUS4-51025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Akhmetova, Irinia A1 - Emmerling, Franziska T1 - Mechanochemical and solution syntheses of two novel cocrystals of orcinol with two N,N0-Dipyridines: Structural diversity with varying ligand flexibility JF - Journal of Molecular Structure N2 - We studied the influence of coformers flexibility on the supramolecular assembly of 5-substituted resorcinol. Two cocrystals of orcinol (ORL) with two dipyridine molecules, i.e. 1,2-di(4-pyridyl)ethane (ORLeBPE) and 1,2-di(4-pyridyl)ethylene (ORLeBPY), were prepared by mechanochemical synthesis and slow evaporation of solvent. The new crystalline solids were thoroughly characterized by single crystal Xray diffraction (SCXRD), powder X-ray diffraction analysis (PXRD), Fourier-transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), and thermogravimetric analysis (TGA). Structural determination reveals that in both cocrystals, the phenolepyridine, i.e. OeH/N(py) heterosynthon takes the main role in the formation of cocrystals. In ORLeBPE, the components form infinite 1D zig-zag chains, which are extended to 2D layer structure by inter-chain CeH/O interactions between BPE hydrogen atoms and hydroxyl oxygen atoms of ORL. In ORLeBPY, the components form a 0D fourcomponent complex. Formation of the discrete assemblies is attributed to the comparative rigid nature of BPY, which restricts the formation of an extended network. KW - Cocrystal KW - Single crystal KW - X-ray diffraction KW - Mechanochemistry PY - 2020 DO - https://doi.org/10.1016/j.molstruc.2020.128303 SN - 0022-2860 VL - 1217 SP - 128303 PB - Elsevier B.V. AN - OPUS4-51023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burek, K. A1 - Dengler, J. A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, M. U. A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems JF - ChemistryOpen N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high-quality cementbased construction material. Complementary experiments of Xray diffraction analysis (XRD), scanning electron microscopy (SEM) and time-resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We Show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time-dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium-silicate-hydrates (C-S-H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C-S-H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. KW - Cement admixtures KW - Cement hydration KW - Europium KW - Luminescence KW - SEM KW - X-ray diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504842 DO - https://doi.org/10.1002/open.201900249 VL - 8 IS - 12 SP - 1441 EP - 1452 PB - Wiley-VCH AN - OPUS4-50484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Feiler, Torvid A1 - Ali, N. Z. A1 - Minas da Piedade, M. E. A1 - Emmerling, Franziska T1 - Mechanistic Insights into a Sustainable Mechanochemical Synthesis of Ettringite JF - ChemistryOpen N2 - Mechanochemistry offers an environmentally benign and facile synthesis method for a variety of cement paste constituents. In addition, these methods can be used to selectively tune the properties of cement components. The mineral ettringite is an important component of cementitious materials and has additional technological potential due to its ion exchange properties. Synthesis of ettringite via mechanochemistry is an environmentally friendly alternative to conventional wet-chemical synthesis established in industry. This contribution explores the mechanism of a two-step mechanochemical synthesis of ettringite, which was previously found to greatly improve the reaction conversion as compared with one-pot synthesis. The crystallinity of Al(OH)3 was found to decrease during the first stage of this mechanochemical synthesis. This was correlated to a significant decrease in the particle size of Al(OH)3 in this stage. No other significant changes were found for the other components, suggesting that mechanochemical activation of Al(OH)3 is responsible for the enhanced formation of ettringite by the two-step approach. The environmentally friendly approach developed for ettringite synthesis offers a versatile synthetic strategy, which can be applied to synthesise further cementitious materials. KW - Ettringite KW - Mechanochemistry KW - Sustainability KW - X-ray diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489172 DO - https://doi.org/10.1002/open.201900215 VL - 8 IS - 7 SP - 1012 EP - 1019 PB - ChemPubSoc AN - OPUS4-48917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stroh, Julia A1 - Emmerling, Franziska T1 - In situ full phase analysis of the early cement hydration N2 - Fresh cement paste is a suspension consisting of a hydraulic binder (cement), water, and numerous minor components – admixtures. Addition of admixtures aims at specific modification of properties of the fresh cement paste or hardened cementitious building material. Specific admixtures, so-called superplasticizers (SP), are used to improve the flowability of the fresh cement paste with reduced water content. The latter is the starting material for the high-strength concrete. Thus, SPs are essential for the ambitious construction projects. However, uncontrollable retardation of the setting time in presence of SPs is occasionally observed. Obviously, SPs influence early products of the cement hydration leading to changes in the microstructure development. The hardening is thus delayed, and the quality of the resulting building material suffers. The mechanisms of the admixture action during the hydration process are still intensively investigated [1-7]. A detailed understanding of the admixture effects during the early hydration stage is the key to control and individual adjustment of the cement-based construction materials. We use the unique combination of the wall-free sample holder and the time-resolved X-ray scattering analysis to achieve the full information about the hydrate phases formed under the influence of admixtures. We use ultrasonic levitator to start the cement hydration in levitated cement pellets [8, 9]. The sample levitation allows collection of the unimpaired information about cement hydrate phases. The most beneficial is the avoiding of the contributions of the sample holder material to the data signal. We induce the cement hydration by adding water to unhydrated Portland cement during the data acquisition. The full phase composition of the hydrating cementitious system can be gathered in situ using wide angle X-ray scattering (WAXS). During the hydration of cement both crystalline and amorphous hydrate phases are formed. WAXS data contain the information about crystalline phases behind the Bragg reflections, whereas the amorphous hydrates influence the appearance of the background. Application of the data analysis specific for crystalline or amorphous phases is needed. The data quantification by the Rietveld method allows to conclude about the changes of the phase amounts due to the presence of admixture. The calculation of the pair distribution functions allows analysis of the amorphous hydrates. Based on this information, the SP effects and the extent of their involvement into the ongoing reactions can be concluded. A detailed understanding of the complex cement hydration process is envisioned. T2 - Anakon 2019 CY - Münster, Germany DA - 25.03.2019 KW - Cement KW - Admixtures KW - Pair Distribution Functions KW - X-ray diffraction KW - Total scattering analysis PY - 2019 AN - OPUS4-47664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Haferkamp, Sebastian A1 - Akhmetova, Irina A1 - Röllig, Mathias A1 - Maierhofer, Christiane A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical one-pot syntheses JF - Angewandte Chemie International Edition N2 - We present an in situ triple coupling of synchrotron X-ray diffraction with Raman spectroscopy, and thermography to study milling reactions in real time. This combination of methods allows a correlation of the structural evolution with temperature information. The temperature information is crucial for understanding both the thermodynamics and reaction kinetics. The reaction mechanisms of three prototypical mechanochemical syntheses, a cocrystal formation, a C@C bond formation (Knoevenagel condensation), and the formation of a manganese-phosphonate, were elucidated. Trends in the temperature development during milling are identified. The heat of reaction and latent heat of crystallization of the product contribute to the overall temperature increase. A decrease in temperature occurs via release of, for example, water as a byproduct. Solid and liquid intermediates are detected. The influence of the mechanical impact could be separated from temperature effects caused by the reaction. KW - In situ studies KW - Mechanochemistry KW - Raman spectroscopy KW - Thermography KW - X-ray diffraction PY - 2018 DO - https://doi.org/10.1002/anie.201800147 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 20 SP - 5930 EP - 5933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-44946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -