TY - JOUR A1 - Liebig, F. A1 - Sarhan, R. M. A1 - Schmitt, C. N. Z. A1 - Thünemann, Andreas A1 - Prietzel, C. A1 - Bargheer, M. A1 - Koetz, J. T1 - Gold Nanotriangles with Crumble Topping and their Influence on Catalysis and Surface‐Enhanced Raman Spectroscopy N2 - By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)‐stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5±1 nm and an edge length of about 175±17 nm, the AOT bilayer is replaced by a polymeric HA‐layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA‐shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon‐driven dimerization of 4‐nitrothiophenol (4‐NTP) to 4,4′‐dimercaptoazobenzene in a yield of up to 50 %. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle KW - Gold PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503977 DO - https://doi.org/10.1002/cplu.201900745 VL - 85 IS - 3 SP - 519 EP - 526 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo T1 - Femtosecond laser functionalized surfaces inspired by nature N2 - Nature has continuously inspired science when practical problems need to be solved in a functional and efficient way. The challenge for researchers usually consists in the transfer of such biological functionalities to diverse types of technical materials with the available processing technologies. In this regard, femtosecond laser-based approaches offer a large flexibility to modify virtually any material (metals, semiconductors and dielectrics), provide the ability to work under different environment conditions (air, vacuum or reactive atmospheres) and when combined with the proper optics, they offer exceptional spatial resolutions that could be used to mimic effectively very complex functionalities. In the particular case of surface processing, lasers have been proven feasible to functionalize materials by customizing its optical properties, chemical composition and surface morphology in a controllable way and in some cases at industrially relevant speeds. In this work, we present a selection of technical applications based on surface modifications in the form of laser-induced periodic surface structures (LIPSS) to tailor the material properties for utilization in optics, fluid transport, wetting control and tribology. T2 - SPIE Photonics West Conference, Symposium "Laser-Based Micro- and Nano-Processing XIV" CY - San Francisco, CA, USA DA - 01.02.2020 KW - Laser-induced periodic surface structures, LIPSS KW - Biomimetics KW - Surface functionalization KW - Laser ablation PY - 2020 AN - OPUS4-50400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - The role of scattering in the formation of laserinduced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that is accompanying laser materials processing. These surface nanostructures pave a simple way for surface functionalization with numerous applications in optics, fluidics, tribology, medicine, etc. This contribution reviews the current view on the role of electromagnetic scattering in the formation of LIPSS. T2 - Workshop on Theoretical and Numerical Tools for Nanophotonics (TNTN 2020) CY - Berlin, Germany DA - 12.02.2020 KW - Laser-induced periodic surface structures, LIPSS KW - Electromagnetic scattering KW - Finite-difference time-domain calculations PY - 2020 AN - OPUS4-50399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Vianello, A. A1 - Vollertsen, J. A1 - Westad, F. A1 - Braun, Ulrike A1 - Paul, Andrea T1 - Exploratory analysis of hyperspectral FTIR data obtained from environmental microplastics samples N2 - Hyperspectral imaging of environmental samples with infrared microscopes is one of the preferred methods to find and characterize microplastics. Particles can be quantified in terms of number, size and size distribution. Their shape can be studied and the substances can be identified. Interpretation of the collected spectra is a typical problem encountered during the analysis. The image datasets are large and contain spectra of countless particles of natural and synthetic origin. To supplement existing Analysis pipelines, exploratory multivariate data analysis was tested on two independent datasets. Dimensionality reduction with principal component analysis (PCA) and uniform manifold approximation and projection (UMAP) was used as a core concept. It allowed for improved visual accessibility of the data and created a chemical two-dimensional image of the sample. Spectra belonging to particles could be separated from blank spectra, reducing the amount of data significantly. Selected spectra were further studied, also applying PCA and UMAP. Groups of similar spectra were identified by cluster analysis using k-means, density based, and interactive manual clustering. Most clusters could be assigned to chemical species based on reference spectra. While the results support findings obtained with a ‘targeted analysis’ based on automated library search, exploratory analysis points the attention towards the group of unidientified spectra that remained and are otherwise easily overlooked. KW - Microplastics KW - FTIR KW - Exploratory analysis PY - 2020 DO - https://doi.org/10.1039/c9ay02483b VL - 12 IS - 6 SP - 781 EP - 791 PB - Royal Society of Chemistry AN - OPUS4-50396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Setup of a Particle Scattering Simulation environment N2 - A step by step introduction to the setup of a particle scattering simulation is given. Followed by an installation session. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Columbia DA - 12.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Scattering KW - Simulations KW - Debian KW - Linux KW - Topas KW - C++ KW - Topas-nbio KW - Git KW - Cmake PY - 2020 AN - OPUS4-50366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo T1 - Femtosecond laser nanostructuring of metal and semiconductor surfaces N2 - The irradiation of solids with high-intensity laser pulses can excite materials into extreme conditions, which then return to equilibrium via various structural and topographical relaxation mechanisms. Thus, ultrafast laser processing can manifest in various morphological surface transformations, ranging from direct contour shaping to large-area-surface functionalization through the generation of self-organized nano- and microstructures. The interaction mechanisms between semiconductors and metals with ultrashort laser pulses have been extensively studied using femtosecond laser sources, generating a general understanding of the main interaction mechanisms present during the processing of those materials. In the specific case of nanometer-scaled laser-induced periodic surface structures (LIPSS), however, the general explanation that fits all the experimental outcomes is still to be completed. The most accepted explanation consists in the interference of the incoming laser pulse with light scattered at the rough surface, e.g. via surface plasmon polaritons. Such scattering and interference effects generate a spatially modulated pattern of the absorbed optical energy featuring maxima and minima with periods very close to the laser irradiation wavelength, λ. One general criterion that allows to classify LIPSS in terms of their spatial periodicity (Λ) for normally incident radiation is the following: low spatial frequency for Λ≈λ, and high spatial frequency for Λ≪λ. In this way, the right combination of irradiation parameters (laser fluence, number of pulses per spot area unit and repetition rate) could be used to cover a wide size range that can ultimately be exploited for different applications in optics, biology, fluidics and tribology among others. T2 - SPIE Photonics West Conference, Symposium "Synthesis and Photonics of Nanoscale Materials XVII" CY - San Francisco, CA, USA DA - 01.02.2020 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Metal KW - Semiconductor PY - 2020 AN - OPUS4-50388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Rasmussen, K. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Wohlleben, W. A1 - Marvin, H. A1 - Brüngel, R. A1 - Friedrich, C. M. A1 - Löschner, K. A1 - Gilliland, D. T1 - The NanoDefine Methods Manual - Part 3: Standard Operating Procedures (SOPs) N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial'1 funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published the recommendation (2011/696/EU) for a definition of the term 'nanomaterial'1, the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano or non-nano material according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the D50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 3. KW - Nanomaterial KW - Nanoparticles KW - Particle size distribution KW - NanoDefine KW - Standard Operation Procedures KW - Nanomaterial classification KW - SOP PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503710 SN - 978-92-76-11955-5 DO - https://doi.org/10.2760/02910 SN - 1831-9424 VL - JRC117501 SP - 1 EP - 215 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Rasmussen, K. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Wohlleben, W. A1 - Marvin, H. A1 - Brüngel, R. A1 - Friedrich, C. M. T1 - The NanoDefine Methods Manual - Part 2: Evaluation of methods N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial', funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published a recommendation for a definition of the term 'nanomaterial', the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes1. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano- or not a nanomaterial according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all stakeholders (authorities, policy makers, commercial firms), - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the x50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 2. KW - Nanomaterial KW - Nanoparticles KW - NanoDefine KW - Particle size distribution KW - Nanomaterial classification PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503708 SN - 978-92-76-11953-1 DO - https://doi.org/10.2760/071877 SN - 1831-9424 VL - JRC117501 SP - 1 EP - 133 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Wohlleben, W. A1 - Marvin, H. A1 - Weigel, S. A1 - Brüngel, R. A1 - Friedrich, C. M. T1 - The NanoDefine Methods Manual - Part 1: The NanoDefiner Framework and Tools N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial', funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published a recommendation for a definition of the term 'nanomaterial', the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes1. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano- or not a nanomaterial according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all stakeholders (authorities, policy makers, commercial firms), - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the x50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 1. KW - Nanomaterial KW - Nanoparticles KW - NanoDefine KW - Nanoparticle size distribution KW - Nanomaterial classification KW - Framework KW - Tools PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503699 SN - 978-92-76-11950-0 DO - https://doi.org/10.2760/55181 SN - 1831-9424 SP - 1 EP - 89 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, C. T1 - Computation of scattering curves for particles with arbitrary shapes using Debye’s formula N2 - Small-angle scattering data from particle dispersions with narrow size distributions are usually analysed by fitting a model function to the data, which is composed of a monodisperse form factor with a size distribution and, optionally, a structure factor. For common particle shapes like solid spheres, core-shell particles, ellipsoids or rods, the form factor can be computed analytically, and several software packages are readily available which provide a compilation of form factors.1,2 Recently, highly monodisperse nanoparticles with a variety of shapes have been synthesized, e.g. cubes and bipyramids3,4 with lightly capped edges, for which analytic form factors are harder to derive. We compute an approximation to the scattering curve of arbitrary shapes by filling the shape with a quasi-random distribution of point scatterers and using Debye’s formula to get the overall scattering curve. The highly optimized debyer code is used to perform an efficient evaluation of Debye’s formula,5 which can perform the evaluation of 500,000 point scatterers in two minutes on commodity hardware. Moderate polydispersity is handled by interpolating the computed scattering curve over q from a master curve. In this way, the code is fast enough to perform data fitting of particle ensembles with moderate polydispersity for arbitrary shapes to experimental data. This work was partly funded by the 17NRM04 nPSize project of the EMPIR programme co-financed by the EMPIR participating states and by the European Union’s Horizon 2020 research and innovation programme. T2 - 17th Nordic Workshop on Scattering from Soft Matter CY - Linköping, Sweden DA - 14.01.2020 KW - X-ray scattering KW - Nanoparticles KW - Particle shape KW - Modelling KW - Form factor PY - 2020 UR - http://nssm2020.se/ AN - OPUS4-50368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pleskunov, P. A1 - Nikitin, D. A1 - Tafiichuk, R. A1 - Shlemin, A. A1 - Hanus, J. A1 - Kousal, J. A1 - Krtous, Z. A1 - Khalakhan, I. A1 - Kus, P. A1 - Nasu, T. A1 - Nagahama, T. A1 - Funaki, C. A1 - Sato, H. A1 - Gawek, Marcel A1 - Schönhals, Andreas A1 - Choukourov, A. T1 - Plasma polymerization of acrylic acid for the tunable synthesis of glassy abd carboxylated nanoparticle N2 - Polymer nanoparticles (NPs) can be highly attractive in numerous applications including biomedicine where the use of inorganic matter may be detrimental for living tissues. In conventional wet chemistry, polymerization and functionalization of NPs with specific chemical groups involves complex and often numerous reactions. Here, we report on a solvent-free, single-step, low temperature plasma-based synthesis of carboxylated NPs produced by polymerization of acrylic acid under the conditions of a glow discharge. In a monomer-deficient regime, strong fragmentation of the monomer molecules by electron impact results in the formation of 15 nm-sized NPs with <1% retention of the carboxyl groups. In an energy-deficient regime, larger 90 nm-sized NPs are formed with better retention of the carboxyls that reaches 16 %. All types of the NPs exhibit the glass transition above the room temperature which makes them highly stable under aqueous environment with no dissolution or swelling. They are also found to degrade thermally when heated above 150 °C with a decrease of the mean NP size, yet with the retention of the chemical composition. Thus, plasma polymerization proves to be a versatile approach for the production of polymer NPs with tuneable size distribution, chemical composition and physical properties. KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acs.jpcb.9b08960 VL - 124 SP - 668 EP - 678 PB - ACS AN - OPUS4-50351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Hands on: Particle scattering simulations A practical introduction N2 - A practical introduction is given for the necessary steps to start with particle scattering simulations based on Geant4/Topas. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Bogotá, Columbia DA - 04.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Monte-Carlo simulations KW - Simulations KW - Particle scattering simulation KW - Scattering KW - Topas PY - 2020 AN - OPUS4-50333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Particle Scattering Simulations with Geant4: An Overview N2 - A brief overview over the capabilities of Geant4 is provided together with some example applications T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Bogotá, Columbia DA - 03.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Simulation KW - Monte-Carlo simulation KW - Particle scattering simulation KW - Dosimetry KW - Xrays KW - Electrons KW - Radiation PY - 2020 AN - OPUS4-50332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen T1 - Polymer mass spectrometry at BAM with special emphasis on MALDI and ESI N2 - Since its introduction mass spectrometric techniques like Matrix-assisted Laser Desorption/ionization (MALDI) and Electrospray Ionization (ESI) have become indispensable for synthetic polymer analyses. Ideally, various polymer properties (monomer structure, masses, mass distribution, end groups) can be determined simultaneously. However, in real life these experiments are always affected by important structural parameters and instrumental limitations. A short introduction focussing on latest findings with respect to ionisation principles and mechanisms will be given. Recent results from our group will be presented and efforts to avoid common drawbacks of polymer mass spectrometry will be discussed. In this regard, MALDI - Imaging mass spectrometry and the 2D hyphenation of MS with different chromatographic separation techniques were especially useful, since they can provide additional information and reduce the complexity of polymer analyses. T2 - 21. European Symposium on Polymer Spectroscopy CY - Linz, Austria DA - 13.01.2020 KW - Mass spectrometry KW - MALDI-TOF MS KW - ESI-TOF MS KW - Polymer PY - 2020 AN - OPUS4-50260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Gefährdung durch Röntgenstrahlung bei der UKP-Lasermaterialbearbeitung N2 - Der Vortrag beschreibt die Gefährdung durch die Erzeugung unerwünschter Röntgenstrahlung bei der Lasermaterialbearbeitung mit ultrakurzen Laserimpulsen. Die Einfluss der Laserparameter, der Prozessführung und die Materialabhängigkeit werden dargestellt. T2 - Bayerische Laserschutztage 2020 CY - Nuremberg, Germany DA - 21.01.2020 KW - Ultrakurze Laserimpulse KW - Materialbearbeitung KW - Röntgenstrahlung KW - Strahlenschutz PY - 2020 AN - OPUS4-50318 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Aktuelle Ultrakurzpulslaser-Anwendungen an der BAM N2 - Der Vortrag fasst aktuelle Anwendungsgebiete ultrakurzer Laserimpulse in der Materialbearbeitung zusammen. Dabei wird auch die Gefährdung durch unerwünschte Emission von Röntgenstrahlung bei der Überschreitung bestimmter Laserparameter thematisiert. T2 - Anwendertreffen des Laserverbundes Berlin-Brandenburg e.V. CY - Brandenburg, Germany DA - 16.01.2020 KW - Ultrakurze Laserimpulse KW - Materialbearbeitung KW - Oberflächenstrukturierung PY - 2020 AN - OPUS4-50317 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Prinz, Carsten A1 - Stroh, Julia A1 - Feldmann, Ines A1 - Bruno, Giovanni T1 - The correlation between porosity characteristics and the crystallographic texture in extruded stabilized aluminium titanate for diesel particulate filter applications N2 - Porous ceramic diesel particulate filters (DPFs) are extruded products that possess macroscopic anisotropic mechanical and thermal properties. This anisotropy is caused by both morphological features (mostly the orientation of porosity) and crystallographic texture. We systematically studied those two aspects in two aluminum titanate ceramic materials of different porosity using mercury porosimetry, gas adsorption, electron microscopy, X-ray diffraction, and X-ray refraction radiography. We found that a lower porosity content implies a larger isotropy of both the crystal texture and the porosity orientation. We also found that, analogous to cordierite, crystallites do align with their axis of negative thermal expansion along the extrusion direction. However, unlike what found for cordierite, the aluminium titanate crystallite form is such that a more pronounced (0 0 2) texture along the extrusion direction implies porosity aligned perpendicular to it. KW - Preferred orientation KW - X-ray refraction KW - Pore orientation KW - Crystal structure KW - Extrusion KW - Microstructure-property relations PY - 2020 DO - https://doi.org/10.1016/j.jeurceramsoc.2019.11.076 SN - 0955-2219 VL - 40 IS - 4 SP - 1592 EP - 1601 PB - Elsevier Ltd. AN - OPUS4-50325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Saloga, Patrick E. J. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - Environmental impact of ZnO nanoparticles evaluated by in vitro simulated digestion N2 - ZnO nanoparticles are found in different food and consumer products, and their toxicological effects are still under investigation. It is therefore important to understand their behavior in the gastrointestinal tract. Here, we used an in vitro model to assess the physicochemical fate of ZnO nanoparticles during the digestive process in artificial saliva, stomach juice, and intestinal juice. Atomic absorption spectrometry and small-angle X-ray scattering were employed to investigate two ZnO nanomaterials, one intensively characterized reference material and soluble ZnCl2 in a broad range of concentrations between 25 and 1000 μg/mL in the intestinal fluid. Because food components may influence the behavior of nanomaterials in the gastrointestinal tract, starch, milk powder, and olive oil were used to mimic carbohydrates, protein, and fat, respectively. Additionally, ion release of all Zn species was assessed in cell culture media and compared to artificial intestinal juice to investigate relevance of typical cell culture conditions in ZnO nanotoxicology. ZnCl2 as well as the ZnO species were present as particles in artificial saliva but were solubilized completely in the acidic stomach juice. Interestingly, in the intestinal fluid a concentration-independent de novo formation of particles in the nanoscale range was shown. This was the case for all particles as well as for ZnCl2, regardless of the concentration used. Neither of the food components affected the behavior of any Zn species. On the contrary, all Zn species showed a Zn-concentration-dependent ion release in common cell culture medium. This questions the suitability of cell culture studies to investigate the effect of ZnO nanoparticles on intestinal cells. Our results show that Zn-containing nanoparticles reach the intestine. This underlines the importance of determining the influence of the test environment on nanoparticle fate. KW - SAXS KW - Digestion KW - Zinc oxide KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02236 VL - 3 IS - 1 SP - 724 EP - 733 AN - OPUS4-50288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Marcoulaki, E. A1 - van Duuren, B T1 - Testing and benchmarking nanosafety services N2 - One of the objectives of the EU Project EC4SafeNano (European Centre for Risk Management and Safe Innovation in Nanomaterials & Nanotechnologies) was to test and benchmark the services in order to check their relevance to address identified stakeholder needs, but also to evaluate the governance of the structure delivering the proposed services. The aim is to demonstrate the technical relevance of the services and the overall open structure organisation, including governance rules and operating procedures, by answering relevant identified questions (case studies) selected by a panel of stakeholders. Therefore, a significant part of the project will be devoted to this demonstration of the operational and functional basis of the organized network. T2 - Review Meeting EC4SafeNano CY - Brussels, Belgium DA - 16.01.2020 KW - Nanosafety KW - EC4SafeNano KW - Nanosafety services KW - EU KW - Case studies PY - 2020 AN - OPUS4-50273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Characterization of nanoparticles - Measurement processes for nanoparticles N2 - Characterization of Nanoparticles: Measurement Processes for Nanoparticles surveys this fast growing field, including established methods for the physical and chemical characterization of nanoparticles. The book focuses on sample preparation issues (including potential pitfalls), with measurement procedures described in detail. In addition, the book explores data reduction, including the quantitative evaluation of the final result and its uncertainty of measurement. The results of published inter-laboratory comparisons are referred to, along with the availability of reference materials necessary for instrument calibration and method validation. The application of these methods are illustrated with practical examples on what is routine and what remains a challenge. In addition, this book summarizes promising methods still under development and analyzes the need for complementary methods to enhance the quality of nanoparticle characterization with solutions already in operation. KW - Nanoparticles KW - Characterization method KW - Sample preparation KW - Inter-laboratory comparison KW - Standardisation KW - Measurement uncertainty KW - Case studies PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/C2017-0-00312-9 SP - 1 EP - 566 PB - Elsevier CY - Amsterdam AN - OPUS4-50284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Effects of laser-induced periodic surface structures on the superconducting properties of Niobium N2 - It is well known that the use of ultrashort (fs) pulsed lasers can induce the generation of (quasi-) periodic nanostructures (LIPSS, ripples) on the surface of many materials. Such nanostructures have also been observed in sample’s surfaces irradiated with UV lasers with a pulse duration of 300 ps. In this work, we compare the characteristics of these nanostructures on 1-mm and on 25-μm thick niobium sheets induced by 30 fs n-IR and 300 ps UV pulsed lasers. In addition to conventional continuous or burst mode processing configurations, two-dimensional laser beam and line scanning modes have been investigated in this work. The latter allows the processing of large areas with a more uniform distribution of nanostructures at the surface. The influence of the generated nanostructures on the superconducting properties of niobium has also been explored. For this aim, magnetic hysteresis loops have been measured at different cryogenic temperatures to analyse how these laser treatments affect the flux pinning behaviour and, in consequence, the superconductor’s critical current values. It was observed that laser treatments are able to modify the superconducting properties of niobium samples. T2 - E-MRS Spring Meeting 2019 CY - Nice, France DA - 27.05.2019 KW - Superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Niobium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502541 DO - https://doi.org/10.1016/j.apsusc.2019.145140 SN - 0169-4332 SN - 1873-5584 VL - 508 IS - 1 SP - 145140-1 EP - 145140-7 PB - Elsevier CY - Amsterdam AN - OPUS4-50254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are often present when processing solid targets with linearly polarized ultrashort laser pulses. The different irradiation parameters to produce them on metals, semiconductors and dielectrics have been studied extensively, identifying suitable regimes to tailor its properties for applications in the fields of optics, medicine, fluidics and tribology, to name a few. One important parameter widely present when exposing the samples to the high intensities provided by these laser pulses in air environment, that generally is not considered, is the formation of a superficial laser-induced oxide layer. In this paper, we fabricate LIPSS on a layer of the oxidation prone hard-coating material chromium nitride in order to investigate the impact of the laser-induced oxide layer on its formation. A variety of complementary surface analytic techniques were employed, revealing morphological, chemical and structural characteristics of well-known high-spatial frequency LIPSS (HSFL) together with a new type of low-spatial frequency LIPSS (LSFL) with an anomalous orientation parallel to the laser polarization. Based on this input, we performed finite-difference time-domain calculations considering a layered system resembling the geometry of the HSFL along with the presence of a laser-induced oxide layer. The simulations support a scenario that the new type of LSFL is formed at the interface between the laser-induced oxide layer and the non-altered material underneath. These findings suggest that LSFL structures parallel to the polarization can be easily induced in materials that are prone to oxidation. KW - Laser-induced oxide layer KW - Laser-induced periodic surface structures (LIPSS) KW - Surface chemistry KW - Femtosecond laser processing KW - Nanostructuring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502530 DO - https://doi.org/10.3390/nano10010147 SN - 2079-4991 VL - 10(1) IS - Special issue "Laser-generated periodic nanostructures" SP - 147-1 EP - 147-18 PB - MDPI CY - Basel AN - OPUS4-50253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schaepe, Kaija A1 - Jungnickel, H. A1 - Heinrich, Thomas A1 - Tentschert, J. A1 - Luch, A. A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Secondary ion mass spectrometry N2 - This chapter provides an introduction in secondary ion mass spectrometry as one of the leading surface chemical analysis and imaging techniques with molecular specificity in the field of material sciences. The physical basics of the technique are explained along with a description of the typical instrumental setups and their modes of operation. The application paragraph specifically focuses on nanoparticle analysis by SIMS in terms of surface spectrometry, imaging, analysis in organic and complex media, and depth profiling. A review of the existing literature is provided, and selected studies are showcased. Limitations and pitfalls as well as current technical developments of SIMS application in nanoparticle surface chemical analysis are equally discussed. KW - Time-of-flight secondary ion mass spectrometry KW - Surface chemical analysis KW - Imaging KW - Nanomaterials KW - Nanoparticles KW - Core-shell PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00025-0 SP - 481 EP - 509 PB - Elsevier CY - Amsterdam AN - OPUS4-50187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Baer, D. R. A1 - Cant, D. J. H. A1 - Castner, D. G. A1 - Ceccone, G. A1 - Engelhard, M. H. A1 - Karakoti, A. S. A1 - Müller, Anja ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Preparation of nanoparticles for surface analysis N2 - A variety of methods used to prepare nano-objects for surface analysis are described along with information about when they might be best applied. Intrinsic properties of NPs which complicate their characterization and need to be considered when planning for surface or other analyses of NPs are identified, including challenges associated with reproducible synthesis and functionalization of the particles as well as their dynamic nature. The relevant information about the sample preparation processes, along with analysis details and data that need to be added to the collection of material provenance information is identified. Examples of protocols that have been successfully used for preparation of nano-objects for surface analysis are included in an annex. KW - Sample preparation KW - Nanoparticles KW - Surface chemistry KW - XPS KW - Dynamic behavior KW - Nano-object KW - Surface analysis PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00018-3 SP - 295 EP - 347 PB - Elsevier CY - Amsterdam AN - OPUS4-50186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang A1 - Shard, A. G. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Conclusions and perspectives N2 - This chapter briefly summarizes the methods selected within this book for the characterization of nanoparticles with regard to commonly accessible properties: nanoparticle size and size distribution, shape, surface area, surface charge, aggregation state, structure, chemical composition, surface chemistry, and nanoparticle number concentration. Current progress of measurement and analysis, as far as possible according to standard operation procedures, has been the focus of this work. A number of new and less commonly used methods have not been covered, and we outline some of these in this chapter. Future challenges such as automated measurement and analysis, read-across approaches for the prediction of properties, knowledge of measurement uncertainties, the need for certified reference materials, and the necessity to complement measurements methods to obtain more reliable results are covered, and the unmet measurement requirements for real-world nanoparticles are described. KW - Physicochemical characterization KW - Standard operation procedures KW - Data correlation KW - Method development KW - Trends PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00006-7 SP - 527 EP - 534 PB - Elsevier CY - Amsterdam AN - OPUS4-50167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Shard, A. G. A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Introduction N2 - The purpose of this book is to provide a comprehensive collection of analytical methods that are commonly used to measure nanoparticles, providing information on one, or more, property of importance. The chapters provide up-to-date information and guidance on the use of these techniques, detailing the manner in which they may be reliably employed. Within this chapter, we detail the rationale and context of the whole book, which is driven by the observation of a low level of reproducibility in nanoparticle research. The aim of the book is to encourage awareness of both the strengths and weaknesses of the various methods used to measure nanoparticles and raise awareness of the range of methods that are available. The editors of the book have, for many years, been engaged in European projects and standardization activities concerned with nanoparticle analysis and have identified authors who are experts in the various methods included within the book. This has produced a book that can be used as a definitive guide to current best practice in nanoparticle measurement. KW - Nanoparticles KW - Size distribution KW - Shape KW - Chemistry KW - Coating KW - Concentration KW - Standards KW - Charge KW - Characterisation PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00001-8 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-50166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Clifford, C. A1 - Stintz, M. A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang A1 - Fujimoto, T. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - International standards in nanotechnologies N2 - This chapter provides an overview of what standards are, why they are important, and how they are developed. There is a focus on the work of standards committees relevant to nanotechnology measurement and characterization with tables detailing the standards that are currently available for a large number of different techniques, materials, and applications at the nanoscale. KW - Standards KW - Nanotechnology KW - Reproducibility KW - ISO KW - CEN KW - VAMAS PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00026-2 SP - 511 EP - 525 PB - Elsevier CY - Amsterdam AN - OPUS4-50165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kool, L. A1 - Dekker, F. A1 - Bunschoten, A. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Velders, A. H. A1 - Saggiomo, V. T1 - Gold and silver dichroic nanocomposite in the quest for 3D printing the Lycurgus cup N2 - The Lycurgus cup is an ancient glass artefact that shows dichroism as it looks green when a white light is reflected on it and a red colouring appears when a white light is transmitted through it. This peculiar dichroic effect is due to silver and gold nanoparticles present in the glass. In this research we show the synthesis of dichroic silver nanoparticles and their embedding in a 3D printable nanocomposite. The addition of gold nanoparticles to the silver nanoparticle composite, gave a 3D printable nanocomposite with the same dichroism effect of the Lycurgus cup. KW - SAXS KW - Au KW - Ag KW - Nanocomposite KW - 3D printing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-501831 DO - https://doi.org/10.3762/bjnano.11.2 SP - 16 EP - 23 AN - OPUS4-50183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mast, J. A1 - Verleysen, E. A1 - Hodoroaba, Vasile-Dan A1 - Kaegi, R. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Characterization of nanomaterials by transmission electron microscopy - Measurement procedures N2 - In this chapter, approaches are proposed for the descriptive and quantitative characterization of nano-objects with nanometer resolution. Measurements are based on the analysis of the characteristics of 2D projections of individual particles visualized on transmission electron micrographs. Incorporation of spectroscopic methods (EDS and EELS) for elemental analysis of nano-objects is recommended to identify subpopulations of nano-objects in mixtures based on their chemical composition. The focus lies on the determination of physicochemical properties which are essential in a legislatory and regulatory context to define the material as a nanomaterial (NM), and to assess its safety and toxicological potential, using widely accessible equipment. KW - Nanoparticles KW - Sample preparation KW - Image analysis KW - Transmission electron microscopy PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00004-3 SP - 29 EP - 48 PB - Elsevier CY - Amsterdam AN - OPUS4-50121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Vladár, A. E. A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Characterization of nanoparticles by scanning electron microscopy N2 - In this chapter sample preparation, image acquisition, and nanoparticle size and shape characterization methods using the scanning electron microscope (SEM) in reflective and transmitted working modes are described. These help in obtaining reliable, highly repeatable results. The best solutions vary case-by-case and depend on the raw (powdered or suspension) nanoparticle material, the required measurement uncertainty and on the performance of the SEM. KW - Nanoparticles KW - Sample preparation KW - Electron microscopy KW - SEM KW - Size measurement KW - Shape KW - Threshold PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00002-X SP - 7 EP - 27 PB - Elsevier CY - Amsterdam AN - OPUS4-50120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Unger, Wolfgang A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Auger electron spectroscopy N2 - An introduction in the application of Auger Electron Spectroscopy to surface chemical analysis of nanoparticles is given. Auger Electron Spectroscopy is a mature method in the field of surface chemical analysis. The chapter addresses the physical basis of the method, the principal design of recent instruments together with modes of operation and options for the presentation of spectra, as well as different approaches for qualitative (including identification of chemical species) and quantitative surface analysis of elements. An application paragraph on surface chemical analysis of nanoparticles by AES or SAM introduces the different measurement approaches and sample preparation strategies applied by analysts. The analysis of nanoparticle ensembles, the so-called selected point analysis where a narrow primary electron beam is centered on an individual nanoparticle, and chemical mapping of individual nanoparticles (or a line scan across) are addressed. Existing literature is reviewed and informative case studies presented. Limitations and pitfalls in the application of AES in surface chemical analysis of nanoparticles are also addressed. KW - Auger Electron Spectroscopy KW - Surface chemical analysis KW - Imaging surface chemical analysis KW - Nanoparticles KW - Nanotechnology PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00020-1 SP - 373 EP - 395 PB - Elsevier CY - Amsterdam AN - OPUS4-50119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Spektor, K. A1 - Khandarkhaeva, S. A1 - Fedotenko, T. A1 - Pakhomova, A. A1 - Kupenko, I. A1 - Rohrbach, A. A1 - Klemme, S. A1 - Crichton, W. A. A1 - Dyachkova, T. V. A1 - Tyutyunnik, A. P. A1 - Zainulin, Y. G. A1 - Gramilov, S. A. A1 - Dubrovinsky, L. S. T1 - Decomposition of single-source precursors under high-temperature highpressure to access osmium–platinum refractory alloys N2 - Thermal decomposition of (NH4)2[OsxPt1-xCl6] as single-source precursors for Os-Pt binary alloys has been investigated under ambient and high pressure up to 40 GPa. Thermal decomposition of mixed-metal (NH4)2[OsxPt1-xCl6] precursor in hydrogen atmosphere (reductive environment) under ambient pressure results in formation of β-trans[Pt(NH3)2Cl2] and α-trans-[Pt(NH3)2Cl2] crystalline intermediates as well as single and twophase Os—Pt binary alloys. For the first time, direct thermal decomposition of coordination compound under pressure has been investigated. A formation of pure metallic alloys from single-source precursors under pressure has been shown. Miscibility between fcc- and hcpstructured alloys has been probed up to 50 GPa by in situ high-pressure X-ray diffraction. Miscibility gap between fcc- and hcp-structured alloys does not change its positions with pressure up to at least 50 GPa. KW - High-pressure high-temperature KW - Osmium KW - Platinum KW - Phase diagrams KW - Alloys KW - Single-source precursors PY - 2020 DO - https://doi.org/10.1016/j.jallcom.2019.152121 VL - 813 SP - 152121 PB - Elsevier AN - OPUS4-50019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, V. A1 - Fahrenson, C. A1 - Thünemann, Andreas A1 - Donmez, M. H. A1 - Voss, L. A1 - Bohmert, L. A1 - Braeuning, A. A1 - Lampen, A. A1 - Sieg, H. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - Current analyses show a widespread occurrence of microplastic particles in food products and raise the question of potential risks to human health. Plastic particles are widely considered to be inert due to their low chemical reactivity and therefore supposed to pose, if at all only minor hazards. However, variable physicochemical conditions during the passage of the gastrointestinal tract gain strong importance, as they may affect particle characteristics. This study aims to analyze the impact of the gastrointestinal passage on the physicochemical particle characteristics of the five most produced and thus environmentally relevant plastic materials polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate and polystyrene. Scanning electron microscopy (SEM) and subsequent image analysis were employed to characterize microplastic particles. Our results demonstrate a high resistance of all plastic particles to the artificial digestive juices. The present results underline that the main stages of the human gastrointestinal tract do not decompose the particles. This allows a direct correlation between the physicochemical particle characteristics before and after digestion. Special attention must be paid to the adsorption of organic compounds like proteins, mucins and lipids on plastic particles since it could lead to misinterpretations of particle sizes and shapes. KW - Artificial digestion KW - Gastrointestinal barrier KW - Microplastic KW - Oral uptake KW - Particle size PY - 2020 DO - https://doi.org/10.1016/j.fct.2019.111010 VL - 135 SP - 111010 PB - Elsevier Ltd. AN - OPUS4-49999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Energy-dispersive X-ray spectroscopy (EDS) N2 - As one of the widely used analytical methods for the analysis of elemental composition of solid matter, energy dispersive X-ray spectroscopy (EDS) has recently gained significant importance regarding its application to the chemical analysis of nanoparticles, especially in conjunction with the use of a scanning electron microscope (SEM) and the use of the transmission operation mode of SEM (STEM-in-SEM). This development was mainly driven by the technological progress with highly sensitive EDS detectors, such that individual nanoparticles can be quickly inspected with EDS at a SEM. Qualitative information on elemental composition with about 10 nm spatial resolution can be achieved complementary to the high-resolution information of the sample surface morphology within the same scanned area as provided by the electron microscope. Representative examples with successful EDS analysis on nanoparticles are presented, but also limitations of the method are described. KW - EDS KW - EPMA KW - X-rays KW - SEM/EDS PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00021-3 SP - 397 EP - 417 PB - Elsevier CY - Amsterdam AN - OPUS4-49991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Das, S. A1 - Lal, G. A1 - Soni, S. R. A1 - Ghosh, A. A1 - Reddy, C. M. A1 - Ghosh, S. T1 - Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine N2 - Multidrug solids have a potential use to efficiently treat and control a superfluity of medical conditions. To address the current drawbacks of drug development in R&D, it was targeted to achieve new pharmaceutical solid forms of fenamic acids having improved solubility and thermal stability. Subsequently, five new multicomponent solids consisting of three salt hydrates of trimethoprim (TMP) with mefenamic acid (TMP-MFA-H2O), tolfenamic acid (TMP-TFA-H2O) and flufenamic acid (TMP-FFA-H2O), and two cocrystals of sulfamethazine (SFZ) with flufenamic acid (SFZ-FFA) and niflumic acid (SFZ-NFA) were prepared by liquid assisted grinding. Looking at the structures of active pharmaceutical ingredient (API) molecules, it was quite expected that a wide range of supramolecular synthons would lead to cocrystallization. New forms were characterized thoroughly by various solid-state techniques, including single crystal X-ray diffraction (SCXRD), which provided details of hydrogen bonding, molecular packing and interactions between drug and coformer. Kinetic solubility at pH 7.4 buffer study has been carried out and a comparison is made with respect to the parent drugs. A significant enhancement of NSAIDs solubility was observed in all salt hydrate systems of TMP. Thus with increasing physicochemical properties such as improved solubility further leads to the enhancement of bioavailability, which has implications to overcoming the formulation related problems of active pharmaceutical ingredients (APIs). KW - Cocrystals KW - Crystal engineering KW - Solubility PY - 2020 DO - https://doi.org/10.1016/j.molstruc.2019.127028 SN - 0022-2860 VL - 1199 SP - 127028 PB - Elsevier B.V. AN - OPUS4-49873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gibson, N. A1 - Kuchenbecker, Petra A1 - Rasmussen, K. A1 - Hodoroaba, Vasile-Dan A1 - Rauscher, H. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A.G. T1 - Volume-specific surface area by gas adsorption analysis with the BET method N2 - This chapter first gives an introduction to the concepts of SSA and volume-specific surface area (VSSA) and an outline of the BET method. It continues with a discussion of the relationship between particle size, shape, and the VSSA, followed by an overview of instrumentation, experimental methods, and standards. Finally, sections on the use of the VSSA as a tool to identify nanomaterials and non-nanomaterials and its role in a regulatory context provide some insight on the importance of VSSA in the current Regulation of nanomaterials. KW - Nanomaterials KW - Volume specific surface area PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00017-1 SP - 265 EP - 293 PB - Elsevier CY - Amsterdam AN - OPUS4-49572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunz, C. A1 - Bonse, Jörn A1 - Spaltmann, Dirk A1 - Neumann, C. A1 - Turchanin, A. A1 - Bartolomé, J. F. A1 - Müller, F. A. A1 - Gräf, S. T1 - Tribological performance of metal-reinforced ceramic composites selectively structured with femtosecond laser-induced periodic surface structures N2 - The impact of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on tribological properties was investigated for metal-reinforced ceramic composites (Al2O3-ZrO2-Nb). For this purpose, the metallic niobium (Nb) phase was selectively structured with LIPSS in an air environment with different values of the fs-laser peak fluence by near-infrared fs-laser radiation (λ = 1025 nm, τ = 300 fs, frep = 1 kHz), taking advantage of the different light absorption behavior of ceramic and metal. The tribological performance was evaluated by reciprocating sliding tests in a ball-on-disc configuration using Ringer's solution as lubricant. The surfaces were characterized before and after laser irradiation by optical microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and by measuring the contact angle with Ringer's solution. The LIPSS formation resulted in an increased wetting of the surface with the lubricant. Moreover, the selectively structured composite surfaces revealed a coefficient of friction significantly reduced by a factor of ~3 when compared to the non-irradiated surface. Furthermore, the formation of a laser-induced oxidation layer was detected with NbO as the most prominent oxidation state. Selectively structured composites with outstanding mechanical properties and enhanced tribological performance are of particular interest for biomedical applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Ceramic matrix composites KW - Tribology PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2019.143917 SN - 0169-4332 SN - 1873-5584 VL - 499 IS - 1 SP - 143917 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-49255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lee, C. A1 - Inutan, E. D. A1 - Chen, J. L. A1 - Mukeku, M. M. A1 - Weidner, Steffen A1 - Trimpin, S. A1 - Ni, C.-K. T1 - Toward understanding the ionization mechanism of matrix‐assisted ionization using mass spectrometry experiment and theory N2 - Matrix‐assisted ionization (MAI) mass spectrometry does not require voltages, a laser beam, or added heat to initiate ionization, but it is strongly dependent on the choice of matrix and the vacuum conditions. High charge state distributions of nonvolatile analyte ions produced by MAI suggest that the ionization mechanism may be similar to that of electrospray ionization (ESI), but different from matrix‐assisted laser desorption/ionization (MALDI). While significant information is available for MAI using mass spectrometers operating at atmospheric and intermediate pressure, little is known about the mechanism at high vacuum. Eleven MAI matrices were studied on a high‐vacuum time‐of‐flight (TOF) mass spectrometer using a 266 nm pulsed laser beam under otherwise typical MALDI conditions. Detailed comparisons with the commonly used MALDI matrices and theoretical prediction were made for 3‐nitrobenzonitrile (3‐NBN), which is the only MAI matrix that works well in high vacuum when irradiated with a laser. Screening of MAI matrices with good absorption at 266 nm but with various degrees of volatility and laser energies suggests that volatility and absorption at the laser wavelength may be necessary, but not sufficient, criteria to explain the formation of multiply charged analyte ions. 3‐NBN produces intact, highly charged ions of nonvolatile analytes in high‐vacuum TOF with the use of a laser, demonstrating that ESI‐like ions can be produced in high vacuum. Theoretical calculations and mass spectra suggest that thermally induced proton transfer, which is the major ionization mechanism in MALDI, is not important with the 3‐NBN matrix at 266 nm laser wavelength. 3‐NBN:analyte crystal morphology is, however, important in ion generation in high vacuum. The 3‐NBN MAI matrix produces intact, highly charged ions of nonvolatile compounds in high‐vacuum TOF mass spectrometers with the aid of ablation and/or heating by laser irradiation, and shows a different ionization mechanism from that of typical MALDI matrices. KW - Ionization KW - MALDI-TOF MS KW - Mechanism PY - 2021 DO - https://doi.org/10.1002/rcm.8382 VL - 35 IS - 51 SP - e8382 PB - John Wiley & Sons AN - OPUS4-49209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -