TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - The structure of amorphous calcium sulfate and its role in the nucleation pathway and final mesostructure of CaSO 4 phases N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, where the formation of the different crystalline phases involves several steps including a common amorphous precursor. In this contribution a holistic view of the formation mechanism of gypsum and bassanite from solution will be presented. In short, our in situ and time-resolved scattering data demonstrate that calcium sulfate precipitation starts with the formation and aggregation of well-defined sub-3 nm primary species. These species constitute building “bricks'' of an amorphous precursor phase. We characterised the “bricks” by combining information obtained at different length-scales accessible at the mesoscale (from small-angle scattering) and at the atomic-length-scale (wide-angle scattering and high-energy diffraction). From these scattering data we derived pair distribution functions of the clusters and restricted their external shapes and dimensions. This allowed us to propose a structure of the primary species and to explore their dynamic properties with unbiased MD simulations using polarizable force fields. The formation of the amorphous phase involves the aggregation of these small primary species into larger disordered aggregates exhibiting “brick-in-the-wall” structure. The actual crystallisation occurs by the restructuring and coalescence of the “bricks” into a given calcium sulfate phase depending on the thermodynamic conditions of the solution. Importantly, these rearrangement processes by no means continue until a (nearly-)perfect homogeneous single crystal is obtained. Instead they come to a stop or at least significantly slow down. Such a process thus yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous crystal structure, within which the domains are separated by an amorphous calcium sulfate phase. T2 - Goldschmidt Virtual 2021 CY - Online meeting DA - 04.07.2021 KW - Amorphous calcium sulfate KW - Scattering KW - SAXS/WAXS PY - 2021 UR - https://2021.goldschmidt.info/goldschmidt/2021/meetingapp.cgi/Paper/3847 AN - OPUS4-53621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - Scattering is a powerful tool to follow nucleation and growth of minerals from solutions N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. The original ‘textbook’ image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species [e.g. 1], including solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc. In general, these precursor or intermediate species constitute different, often short-lived, points along the pathway from dissolved ions to the final solids (typically crystals in this context). In this regard synchrotron-based scattering (SAXS/WAXS/HEXD) appears to be the perfect tool to follow in situ and in a time-resolved manner the crystallization pathways because of the temporal and spatial length scales that can be directly accessed with these techniques. Here, we show how we used scattering to probe the crystallization mechanisms of calcium sulfate. CaSO4 minerals (i.e. gypsum, anhydrite and bassanite) are widespread in natural and industrial environments. During the last several years, a number of studies have revealed indeed that nucleation in the CaSO4-H2O system is non-classical. Our SAXS data demonstrate that gypsum precipitation, involves formation and aggregation of sub-3 nm primary species. These species constitute building blocks of an amorphous precursor phase [2]. Further, we show how in situ high-energy X-ray diffraction experiments and molecular dynamics (MD) simulations can be combined to derive the atomic structure of the primary CaSO4 clusters seen at small-angles [3]. We fitted several plausible structures to the derived pair distribution functions and explored their dynamic properties using unbiased MD simulations based on polarizable force fields. Finally, based on combined SAXS/WAXS, broad-q-range measurements, we show that the process of formation of bassanite, a less hydrated form of CaSO4, is very similar to the formation of gypsum: it also involves the aggregation of small primary species into larger disordered aggregates [4]. Based on these recent insights we formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42- ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e. amorphous) hydrated aggregates, which in turn undergo ordering into coherent crystalline units of either gypsum or bassanite (and possibly anhydrite). Determination of the structure and (meta)stability of the primary species is important from both a fundamental, e.g. establishing a general non-classical nucleation model, and applied perspective; e.g. allow for an improved design of additives for greater control of the nucleation pathway. T2 - Annual Meeting of German Crystallographic Society (29. Jahrestagung der Deutschen Gesellschaft für Kristallographie - DGK CY - Online meeting DA - 15.03.2021 KW - Scattering KW - Calcium sulfate KW - SAXS/WAXS PY - 2021 AN - OPUS4-53619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kovacevic, E. A1 - Strunskus, T. A1 - Santhosh, N. M. A1 - Zavasnik, Z. A1 - Unger, Wolfgang A1 - Sauvage, T. A1 - Ammar, M.-R. A1 - Cvelbar, U. A1 - Berndt, J. T1 - Thermal stability studies of plasma deposited hydrogenated carbon nitride nanostructures N2 - Thermally stable carbon nitride nanostructures have potential applications in surface coatings and automotive fields. In this work, hydrogenated nitrogen-rich carbon nitride nanoparticles have been synthesised via low-pressure low-power plasma vapour deposition technique from methane/Nitrogen gas mixture in a dry process. Thermal stability of the initially prepared hydrogenated carbon Nitride structures has been analysed by near-edge X-ray absorption fine-structure spectroscopy (NEXAFS, insitu), Raman spectroscopy, scanning and transmission electron microscopy and nuclear reaction Analysis (NRA). Thermal studies reveal the excellent stability of the material and nitrogen-rich characteristics (N/C ratio 0.5e0.2 ± 0.01). The obtained results suggest transformation of sp3-rich as-deposited carbon Nitride into sp2-carbon phase with more graphitic features upon thermal annealing. Such in-situ thermal studies of plasma deposited carbon nitrides confirm the conversion of sp3-rich phase to sp2-rich carbon phase at the critical temperature (about 450 K), without a huge loss in nitrogen content. The analysis revealed that the material is a stable plasma deposit after this critical temperature up to >1100 K. Additionally, super hydrophilic carbon nitride nanostructure transforms into a hydrophobic surface after thermal annealing. These thermally stable hydrophobic carbon nitride nanoparticles could be used as a promising material for the hydrophobic coatings for various applications, especially for harsh conditions. KW - Carbon nanoparticles KW - Hydrogenated nanostructures KW - Plasma deposition KW - NEXAFS KW - Thermal annealing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536163 DO - https://doi.org/10.1016/j.carbon.2021.08.008 SN - 0008-6223 VL - 184 SP - 82 EP - 90 PB - Elsevier Ltd. AN - OPUS4-53616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Radnik, Jörg A1 - Dietrich, P. M. T1 - Near-Ambient-Pressure XPS to investigate radiation damage to DNA N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - Physical and Chemical Analysis of Polymers seminar CY - Online meeting DA - 12.10.2021 KW - Base damage KW - Base loss KW - Cancer therapy KW - DNA KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Dosimetry KW - Double-strand break KW - DSB KW - Dry DNA KW - Geant4 KW - Geant4-DNA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - LEE KW - Low energy electrons KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Prehydrated electron KW - Quasi-direct damage KW - ROS KW - Radiation damage KW - Radiation therapy KW - Radical KW - Reactive oxygen species KW - Single-strand break KW - SSB KW - TOPAS KW - TOPAS-nbio KW - XPS KW - Xray KW - Xray photo electron spectrocopy PY - 2021 AN - OPUS4-53611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Broichert, C. A1 - Klingenhof, M. A1 - Frisch, M. A1 - Dresp, S. A1 - Kubo, N.M. A1 - Artz, J. A1 - Radnik, Jörg A1 - Palkovits, S. A1 - Beine, A.K. A1 - Strasser, P. A1 - Palkovits, R. T1 - Particle size-controlled synthesis of highperformance MnCo-based materials for alkaline OER at fluctuating potentials N2 - For the large-scale generation of hydrogen via water electrolysis the design of long term stable and active catalysts for the oxygen evolution reaction (OER) remains a key challenge. Most catalysts suffer from severe structural corrosion that becomes even more pronounced at fluctuating potentials. Herein, MnCo based cubic particles were prepared via a hydrothermal approach, in which the edge length of the micron-sized particles can be controlled by changing the pH value of the precursor solution. The cubes are composed of varying amounts of MnCo2O4, CoCO3 and a mixed (Mn/Co)CO3 phase. Structure–activity relationships were deduced revealing a volcano-type behavior for the intrinsic OER activity and fraction of spinel oxide phase. A low overpotential of 0.37 V at 10 mA cm−2 and a stability of more than 25 h was achieved in 1.0 M KOH using a rotating disc electrode (RDE) setup. The best performing catalyst material was successfully tested under dynamic process conditions for 9.5 h and shows a superior catalytic activity as anode for the Overall water splitting in an electrolyser setup in 1.0 M KOH at 333 K compared to a reference NiCo-spinel catalyst. KW - Water electrolysis KW - Oxygen evolution reaction KW - Structure activity relationships PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536050 DO - https://doi.org/10.1039/d1cy00905b SN - 2044-4753 VL - 11 IS - 12 SP - 7278 EP - 7286 PB - Royal Society of Chemistry AN - OPUS4-53605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Maiwald, Michael A1 - Villajos Collado, José Antonio T1 - Metal-organic framework compounds as hydrogen storage materials to enhance the safety, capacity, and efficiency of hydrogen refueling stations N2 - Gas adsorption is based on physical properties between gases and solid materials, enriching the surface with packed gas molecules with a higher density than in the bulk phase. For using this mechanism as a gas storage strategy, highly porous materials are necessary since large surfaces in small volumes can provide the storage system with a higher density than the gas phase. In the case of hydrogen gas, the interaction forces with solid surfaces are generally low at room temperature but can increase considerably at low operating temperatures. As a counterpart, the storage pressure is considerably lower than that necessary by traditional gas compression. Amongst ultra-porous adsorbent materials for hydrogen cryoadsorption, metal-organic frameworks (MOFs) are a group of remarkable solids made from metallic nodes linked by organic molecules exhibiting a wide variety of composition, geometry, porous properties, and chemical functionality. The scientific community focused in the last years on enhancing both the specific area of materials and the interaction energy to extend the storage properties of cryoadsorption to ambient-temperature and use it as hydrogen storage mechanisms in vehicles. However, the found difficulty in achieving ultra-porous structures with high-enough interaction energies decreased this research interest in the last years. However, for a stationary application like hydrogen refueling stations, where space and weight are not such limits as in vehicles, cryoadsorption can still be considered a feasible candidate for hydrogen storage. Cryoadsorption is the only fast and fully reversible approach to store hydrogen at similar density values as compressed gas. Cryogenic operation is a technological challenge, but first, liquid nitrogen is cheap, and second, it is less energy-demanding than hydrogen liquefaction, which is indeed considered as feasible for transportation and storage. Cryoadsorption involves lower pressure than compressed gas, increasing safety in the storage facilities, but additional research on the construction materials properties is necessary to better understand their behavior in contact with hydrogen at cryogenic temperatures. However, the knowledge of all these mechanisms is important to identify the improvement opportunities based on, probably, the interphase between different solutions. To achieve the set project goals, this internal research report describes the work packages realised within the framework of the project. KW - Metal-organic frameworks (MOFs) KW - Hydrogen Storage KW - Reversible Hydrogen Storage KW - Hydrogen Fuelling Stations KW - Croyo-starage KW - High-pressure volumetric analyzer (HPVA) PY - 2021 SP - 1 EP - 48 CY - Berlin AN - OPUS4-53582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Mazzeo, P. A1 - Belenguer, Ana A1 - Sanders, J. K. M. A1 - Bacchi, A. A1 - Emmerling, Franziska T1 - Changing the game of time resolved X-ray diffraction on the mechanochemistry playground by downsizing N2 - Time resolved in situ (TRIS) monitoring has revolutionised the study of mechanochemical transformations but has been limited by available data quality. Here we report how a combination of miniaturised grinding jars together with innovations in X-ray powder diffraction data collection and state-of-the-art analysis strategies transform the power of TRIS synchrotron mechanochemical experiments. Accurate phase compositions, comparable to those obtained by ex situ measurements, can be obtained with small sample loadings. Moreover, microstructural parameters (crystal size and microstrain) can be also determined with high confidence. This strategy applies to all chemistries, is readily implemented, and yields high-quality diffraction data even using a low energy synchrotron source. This offers a direct avenue towards the mechanochemical investigation of reactions comprising scarce, expensive, or toxic compounds. Our strategy is applied to model systems, including inorganic, metal-organic, and organic mechanosyntheses, resolves previously misinterpreted mechanisms in mechanochemical syntheses, and promises broad, new directions for mechanochemical research. KW - Mechanochemistry KW - Synchrotron radiation KW - Material synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535932 DO - https://doi.org/10.1038/s41467-021-26264-1 SN - 2041-1723 VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Publishing Group CY - London AN - OPUS4-53593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Topolniak, Ievgeniia A1 - Weise, Matthias A1 - Sturm, Heinz T1 - Shape deviations of DLW microstructures in dependency of fabrication parameters N2 - Deep understanding of the effects associated with fabrication parameters and their influence on the resulting structures shape is essential for the further development of direct laser writing (DLW). In particular, it is critical for development of reference materials, where structure parameters are precisely fabricated and should be reproduced with use of DLW technology. In this study we investigated the effect of various fabrication and preparation parameters on the structural precision of interest for reference materials. A well-studied photo-curable system, SZ2080 negative photo-resist with 1 wt.% Michler's ketone (Bis) photo-initiator, was investigated in this work. The correlation between applied laser power, laser velocity, fabrication direction on the deviations in the structure shape were observed by means of white light interferometry microscopy. Moreover, influence of slicing and hatching distances as well as prebake time were studied as function of sample shape. Deviations in the structure form between the theoretically expected and the one detected after DLW fabrication were observed in the range up to 15%. The observed shape discrepancies show the essential importance of fine-tuning the fabrication parameter for reference structure production. KW - Direct laser writing KW - Fabrication parameters KW - Structural precision KW - SZ2080 negative photo-resist KW - White light interferometry microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535906 DO - https://doi.org/10.1088/1361-6439/ac2a14 VL - 31 IS - 12 SP - 1 EP - 8 PB - IOP Science AN - OPUS4-53590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Simon, P. ED - Ihlemann, J. ED - Bonse, Jörn T1 - Laser-generated periodic nanostructures N2 - This book is a reprint collection of articles from the Special Issue published online in the open access journal Nanomaterials. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser-interference patterning (DLIP) KW - Applications KW - Numerical simulations PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535146 UR - https://www.mdpi.com/books/pdfview/book/4426 SN - 978-3-0365-2027-8 SN - 978-3-0365-2028-5 DO - https://doi.org/10.3390/books978-3-0365-2028-5 SP - 1 EP - 328 PB - MDPI CY - Basel AN - OPUS4-53514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Netzband, Olivia A1 - Lagleder, Michaela A1 - Beck, Uwe T1 - Materialographische Untersuchungen an Funktionsschichten N2 - Oberflächenmodifizierte Grundwerkstoffe, insbesondere solche mit funktionellen Schichten, sind in unterschiedlichsten Branchen und Anwendungen anzutreffen. Es werden Quer- und Kalottenschliffe von Einfach- und Mehrschichtsystemen mit Beispielen aus dem Bereich des Korrosions- und Verschleißschutzes sowie dekorativer Anwendungen auf unterschiedlichsten Grundwerkstoffen (X5CrNi1810 Stahl, 100Cr6 Stahl, Hartmetall, ABS und Pappe) vorgestellt. Ebenso vielfältig wie die Grundwerkstoffe sind die Oberflächenmodifizierungen mit Funktionsschichten auf Basis von Nitrierungen, Hartstoffen, diamantähnlichem Kohlenstoff, Metallisierungen und Lackschichten mit Interferenzpigmenten. Neben der Identifikation von Schichtdefekten gilt das Hauptaugenmerk der materialographischen Analyse der Erfüllung der Schichtdickenspezifikation und der Bewertung der Homogenität der Schichtdicke auch bei kritischen Geometrien. Zur Validierung der Schichtdicken- bzw. Längenbestimmung im Querschliff wurde ein Laborvergleichsversuch mit einem Nickel-beschichteten Kupferdraht durchgeführt, den alle der 10 Teilnehmer bestanden. T2 - 55. Materialographie-Tagung CY - Online meeting DA - 29.09.2021 KW - Metallographie KW - Schichtdicken KW - Korrosion KW - Kalottenverfahren PY - 2021 AN - OPUS4-53504 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lagleder, Michaela A1 - Netzband, Olivia A1 - Beck, Uwe A1 - Lange, Thorid T1 - Materialographische Untersuchungen an Bauteilen N2 - Eine Grundanforderung an Bauteile ist deren mechanische Integrität, die als Festigkeit (globale Bauteilbeanspruchung) bzw. Tragfestigkeit (lokale Beanspruchung) zu verstehen ist. Die Bauteilfestigkeit wird wesentlich durch das Materialgefüge bestimmt und kann über die Prüfung der Härte des Grundwerkstoffes lokal erfasst werden. Bei Bauteilverbindungen (z.B. Schweißnähte) ist zudem der Übergangsbereich zwischen den Fügeteilen von besonderem Interesse, bei Passungen oder Gleitlagern sind zudem geringe Rauheiten erforderlich, die oft durch mechanische Oberflächen-bearbeitung realisiert werden. Leichtbauweisen können sowohl über hochfeste Stahllegierungen bei geringem Materialeinsatz als auch über Aluminiumlegierungen realisiert werden. Für unterschied-liche Grundwerkstoffe (X2CrNiMo18-14-3, Co-Cr-W-Ni, AlSi10Mg, X5CrNi1810, ferritische Schweiß-nähte) werden an Quer- und Oberflächenschliffen Änderungen im Gefüge, morphologische Besonderheiten, Härteverläufe sowie Änderungen in den Rauheitskennwerten betrachtet, wie sie im Ergebnis mechanischer Oberflächenbearbeitung, bedingt durch den Herstellungsprozess, die Beanspruchung oder den Fügeprozess auftreten. Zur Validierung der Härtebestimmung wurde ein Laborvergleichsversuch an einer MPA-zertifizierten Härtevergleichsplatte und einer 100Cr6 Referenzprobe durchgeführt, den drei bzw. fünf der insgesamt fünf Teilnehmer bestanden. T2 - 55. Materialographie-Tagung CY - Online meeting DA - 29.09.2021 KW - Gleitlinien KW - Rauheit KW - Härteverlauf Schweißnaht KW - Laborvergleich Härte KW - Aluminium PY - 2021 AN - OPUS4-53503 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Rudic, S. A1 - Pulham, C. A1 - Morrison, C. T1 - Predicting the impact sensitivity of a polymorphic high explosive: the curious case of FOX-7 N2 - The impact sensitivity (IS) of FOX-7 polymorphs is predicted by phonon up-pumping to decrease as layers of FOX-7 molecules flatten. Experimental validation proved anomalous owing to a phase transition during testing, raising questions regarding Impact sensitivity measurement and highlighting the need for models to predict IS of polymorphic energetic materials. KW - Energetic materials KW - Density functional theory KW - Inelastic Neutron Scattering Spectroscopy KW - Impact Sensitivity PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535558 DO - https://doi.org/10.1039/d1cc03906g SN - 1364-548X VL - 57 IS - 85 SP - 11213 EP - 11216 PB - Royal Society of Chemistry AN - OPUS4-53555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, I. A1 - Carta, M. A1 - Haferkamp, Sebastian A1 - Feiler, Torvid A1 - Delogu, F. A1 - Colacino, E. A1 - Emmerling, Franziska T1 - Mechanochemical N‑Chlorination Reaction of Hydantoin: In Situ Real-Time Kinetic Study by Powder X‑ray Diffraction and Raman Spectroscopy N2 - Mechanochemistry has become a valuable tool for the synthesis of new molecules, especially in the field of organic chemistry. In the present work, we investigate the kinetic profile of the chlorination reaction of N-3-ethyl-5,5-dimethylhydantoin (EDMH) activated and driven by ball milling. The reaction has been carried out using 2 mm, 4 mm, 5 mm, 6 mm, and 8 mm ball sizes in a new small custom-made Perspex milling jar. The Crystal structure of the starting material EDMH and the 1-chloro-3-ethyl5,5′-dimethyl hydantoin (CEDMH) chlorination product was solved by single-crystal X-ray diffraction. The reaction was monitored, in situ and in real time, by both powder X-ray diffraction (PXRD) and Raman spectroscopy. Our kinetic data show that the reaction progress to equilibrium is similar at all milling ball sizes. The induction period is very short (between 10 and 40 s) when using 4 mm, 5 mm, 6 mm, and 8 mm balls. For the reaction performed with a 2 mm ball, a significantly longer induction period of 9 min was observed. This could indicate that an initial energy accumulation and higher mixing efficiency are necessary before the reaction starts. Using different kinetic models, we found that the amount of powder affected by critical loading conditions during individual impacts is significantly dependent on the ball size used. An almost linear correlation between the rate of the chemical transformations and the ball volume is observed. KW - Mechanochemistry KW - In situ real-time monitoring KW - N-Chlorination KW - Kinetics KW - Hydantoin KW - Powder X-ray diffraction KW - Raman spectroscopy PY - 2021 DO - https://doi.org/10.1021/acssuschemeng.1c03812 VL - 9 IS - 37 SP - 12591 EP - 12601 AN - OPUS4-53541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gernhard, M. A1 - Rautenberg, Max A1 - Hörner, G. A1 - Weber, B. A1 - Emmerling, Franziska A1 - Roth, C. T1 - Mechanochemical Synthesis as a Greener Way to ProduceIron-based Oxygen Reduction Catalysts N2 - Iron-based catalysts have been reported manifold and studied as platinum group metal (PGM) free alternatives for the catalysis of the oxygen reduction reaction (ORR). However, their sustainable preparation by greener synthesis approaches is usually not discussed. In this work, we propose a new method for the sustainable preparation of such catalysts by using a mechanochemical approach, with no solvents and non-toxic chemicals. The materials obtained from low temperature carbonization (700 °C) exhibit considerable and stable catalytic performance for ORR in alkaline medium. A catalyst obtained from iron hydroxide, tryptophan, dicyandiamide, and ammonium nitrate shows the best electrocatalytic Performance with an overpotential of 921 mV vs. RHE at 0.1 mA/cm2 and an electron transfer number of 3.4. KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - AEMFC KW - Mössbauer Spectroscopy KW - Sustainable Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535326 DO - https://doi.org/10.1002/zaac.202100194 VL - 647 IS - 22 SP - 2080 EP - 2087 PB - Weinheim-VCH GmbH AN - OPUS4-53532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Souza, B. A1 - Chauque, S. A1 - de Oliveira, P. A1 - Emmerling, Franziska A1 - Torresi, R. T1 - Mechanochemical optimization of ZIF-8/Carbon/S8 composites for lithium-sulfur batteries positive electrodes N2 - The application of lithium-sulfur (Li-S) batteries is still limited by their rapid capacity fading. The pulverization of the sulfur positive electrode after the lithiation and the consequence dissolution of long chain polysulfides in organic solvents lead to the shuttle effect. To address these issues, here we report the mechanochemical preparation of ZIF-8 (Zeolitic Imidazole Framework-8)-based composites as sulfur hosts for positive electrodes in Li-S batteries. We studied different methods for the incorporation of conductive carbon. Also, the replacement of Zn2+ metal centers by other bivalent metals (Cu2+, Co2+ and Ni2+), enabled the preparation of other ZIF-8-based materials. The positive electrode ZIF-8/C/S8 showed initial discharges of 772 mA h g−1 while the pristine one, ZIF-8/S8, displayed 502 mA h g−1. The enhanced performance of 54% for ZIF-8/C/S8 indicates that the direct mechanochemical synthesis of ZIF-8 with conductive carbon is beneficial at initials charge/discharge process in comparison to traditional slurry preparation (ZIF-8/S8). Also, the Li2S6 absorption tests shows 87% of discoloration with ZIF-8/C/S8, confirming the better polysulfides absorption. KW - Lithium-sulfur battery KW - Metal organic frameworks KW - ZIF-8 KW - Mechanochemistry PY - 2021 DO - https://doi.org/10.1016/j.jelechem.2021.115459 VL - 896 SP - 115459 PB - Elsevier B.V. AN - OPUS4-53542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max T1 - Coordination Polymers for the Applications in Electrochemical Devices N2 - Coordination polymers can be used as sacrificial templates to prepare nitrogen- and metal doped carbons (NMCs), which are promising catalysts for the oxygen reduction reaction. We at BAM employ mechanochemistry as a "green" synthetic approach to coordiantion polymers, which are throroughly characterized by methods such as XRD, XPS and sorption studies. Our collaborators can prepare NMCs from our coordination polymers and assess the catalytic activity thereof. T2 - 3rd Training School: "Mechanochemistry: from supramolecular to covalent bonds - synthesis and strctural characterization CY - Lisbon, Portugal DA - 22.03.2021 KW - PGM-free catalyst KW - Mechanochemistry KW - MOFs KW - Electrocatalysis KW - Oxygen reduction reaction (ORR) PY - 2021 AN - OPUS4-53536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, Marius A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Synthesis and characterization of fluorinated Co-Zn-Zeolitic imidazole frameworks for catalysis of the oxygen reduction reaction N2 - The oxygen reduction reaction (ORR) is a common process in a variety of electrochemical devices, like fuel cells and metal air batteries. The sluggish kinetics of the ORR require an electrocatalyst to pass this bottleneck.[1] Currently, the most used catalytical systems are platinum-based, with several drawbacks, such as the high cost, low availability, and deactivation by CO poisoning.[2] Efforts are made to develop efficient, durable and low cost catalysts to promote the commercialization of fuel cells. Non-precious metal catalysts are promising candidates for efficient ORR catalysis. It has been shown that pyrolyzing metal organic frameworks (MOFs) under inert conditions yields carbon-rich materials, with evenly distributed metal sites, which possess promising electrocatalytic activity.[3] One widely used type of MOF as ORR catalyst precursors is the zeolitic imidazole framework (ZIF) where metal cations are linked through imidazolebased ligands. Herein we report the mechanochemical synthesis, structural analysis and of Co-doped ZIF-8 (Zn), as well as its fluorinated counterpart Co-doped CF3 -ZIF-8 (Zn). The samples showed electrochemical performance comparable to platinum after carbonization for 1h at temperatures ranging between 850 – 1000°C. T2 - 15th International conference on materials chemistry (MC15) CY - Online meeting DA - 12.07.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, Marius A1 - Low, Jian L. A1 - Roth, Christina A1 - Paulus, Beate A1 - Emmerling, Franziska T1 - Fluorine Modified ZIF 8 for Electrochemical Catalysis: Where does the Fluorine go? N2 - Carbonization of fluorinated metal-organic frameworks (MOFs) should yield fluorinated nitrogen- and metal-doped carbons (F-NMCs), which are a combination of NMCs and fluorinated carbons, each promising electrocatalysts on their own. We synthesized two polymorphs of a fluorinated MOF by mechanical ball mill grinding, and carbonized them to yield potential electrocatalyt materials. The catalytical activity towards the oxygen reduction reaction (ORR) was examined, finding good activites. Simulations from a theoretic model helped assesing the stability of proposed catalytic sites and understanding the measured activites towards the ORR catalysis. T2 - Online symposium of the CRC 1349 "fluorine-specific interactions" CY - Online meeting DA - 29.06.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs KW - Computational chemistry PY - 2021 AN - OPUS4-53538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, Marius A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Fluorination and co-doping of ZIF-8 by ball mill grinding for efficient oxygen reduction electrocatalysis N2 - The oxygen reduction reaction (ORR) is a common process in a variety of electrochemical devices, like fuel cells and metal air batteries. The sluggish kinetics of the ORR require an electrocatalyst to pass this bottleneck.[1] Currently, the most used catalytical systems are platinum-based, with several drawbacks, such as the high cost, low availability, and deactivation by CO poisoning.[2] Efforts are made to develop efficient, durable and low cost catalysts to promote the commercialization of fuel cells. Non-precious metal catalysts are promising candidates for efficient ORR catalysis. It has been shown that pyrolyzing metal organic frameworks (MOFs) under inert conditions yields carbon-rich materials, with evenly distributed metal sites, which possess promising electrocatalytic activity.[3] One widely used type of MOF as ORR catalyst precursors is the zeolitic imidazole framework (ZIF) where metal cations are linked through imidazole-based ligands. Their porous nature is partially retained after carbonization, making MOFs very suitable precursor materials. Herein we report the mechanochemical synthesis and structural analysis of Co-doped ZIF-8 (Zn), as well as two polymorphs (dense and prorous) of fluorinated Co-doped CF3-ZIF-8 (Zn). The samples showed electrochemical performance comparable to platinum after carbonization for 1 h at temperatures ranging between 850 – 1000°C. T2 - XXV General Assembly and Congress of the International Union of Crystallography - IUCr 2021 CY - Prague, Czech Republic DA - 14.08.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, Marius A1 - Low, Jian L. A1 - Paulus, Beate A1 - Roth, Christina A1 - Emmerling, Franziska T1 - The Effect of Fluorine on Catalysts for the Oxygen Reduction Reaction obtained from Metal Organic Frameworks N2 - The oxygen reduction reaction (ORR) – an important reaction in electrochemical devices, such as fuel cells - is characterized by its sluggish kinetics and therefore requires catalysis. The industry currently relies on platinum as a catalyst, although it is scarce and expensive, hindering the commercial breakthrough of fuel cells in automotive applications. Platinum-free catalysts on basis of nitrogen- and metal doped carbons (NMCs) and fluorinated carbons are promising materials to replace platinum-based catalysts for the ORR. In this work we prepared six metal-organic frameworks (MOFs) by mechanical ball mill grinding and studied their formation by in-situ powder X-ray diffraction. Furthermore, the samples were carbonized under controlled conditions (900°C, 1h, N2-atmosphere) to yield carbon materials, that were employed in ORR-electrocatalysis. The effect of Co-doping and fluorination was systematically studied and outstanding ORR activity was found for the catalyst prepared from the Co-doped fluorinated ZIF-8. T2 - International Symposium on Fluorine-specific interactions CY - Berlin, Germany DA - 27.09.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -