TY - JOUR A1 - McNeil, Sue A1 - Adey, Bryan A1 - Anastasopoulos, Panagiotis Ch. A1 - Chu, James C. A1 - Derrible, Sybil A1 - Durango-Cohen, Pablo A1 - Francis, Royce A1 - Kruschwitz, Sabine A1 - Labi, Samuel A1 - Li, Joshua A1 - Manuel, Lance A1 - Cunha Marques, Rui A1 - Reilly, Allison A1 - Tesfamariam, Solomon A1 - Sanford, Kristen L. T1 - Journal of Infrastructure Systems: Thirty Years and an Opportunity to Refocus N2 - The editorial reflects on the 30-year journey of the Journal of Infrastructure Systems, highlighting its evolution, interdisciplinary mission, and contributions to the field of civil infrastructure. It traces the journal's history, including the introduction of new paper formats, awards, and its commitment to engaging early-career professionals. Looking forward, the journal emphasizes its focus on complex, system-level challenges, encouraging submissions that integrate engineering with data-driven, cross-disciplinary approaches, particularly in areas like smart infrastructure, climate resilience, and sustainability. The editorial concludes with gratitude to contributors and a call for continued collaboration to advance the understanding and management of infrastructure systems. KW - Maintenance KW - Infrastructure systen KW - Transportation KW - Repair KW - Climate resilience KW - Refurbishment PY - 2025 DO - https://doi.org/10.1061/JITSE4.ISENG-2690 VL - 31 IS - 1 SP - 1 EP - 2 PB - American Society of Civil Engineers (ASCE) AN - OPUS4-62773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farhan, Muhammad A1 - Schneider, Ronald A1 - Thöns, Sebastian A1 - Gündel, M. T1 - Probabilistic cost modeling as a basis for optimizing inspection and maintenance of turbine support structures in offshore wind farms N2 - The operational management of offshore wind farms includes inspection and maintenance (I&M) of the wind turbine support structures. These activities are complex and influenced by numerous uncertain factors that affect their costs. The uncertainty in the I&M costs should be considered in decision value analyses performed to optimize I&M strategies for the turbine support structures. In this paper, we formulate a probabilistic parametric model to describe I&M costs for the common case in which a wind farm is serviced and maintained using a workboat-based strategy. The model is developed based on (a) interviews with a wind farm operator, engineering consultants, and operation and maintenance engineers, as well as (b) scientific literature. Our methodology involves deriving the probabilistic models of the cost model parameters based on intervals representing a subjective expert opinion on the foreseeable ranges of the parameter values. The probabilistic cost model is applied to evaluate the total I&M costs, and a sensitivity analysis is conducted to identify the main cost drivers. The model can be utilized to optimize I&M strategies at the component, structural system, and wind farm level. To illustrate its potential use, we apply it in a numerical study in which we optimize I&M strategies at the structural system level and identify and demonstrate a simplified approach of capturing uncertain I&M costs in the optimization. The simplified approach is generalized and made available for maintenance cost optimization of offshore wind turbine structures. KW - Inspection KW - Maintenance KW - Turbine support structures KW - Offshore wind KW - Costs PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626144 DO - https://doi.org/10.5194/wes-10-461-2025 SN - 2366-7443 SN - 2366-7451 VL - 10 IS - 2 SP - 461 EP - 481 PB - Copernicus Publications CY - Göttingen AN - OPUS4-62614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Binder, Christian A1 - Arlt, Karin A1 - Brock, Thomas A1 - Hartwig, Peter A1 - Hesse, Olaf A1 - Kasch, Thomas T1 - The importance of quality assurance and batch testing on nonmetallic meaterials used for oxygen service N2 - In oxygen components, even for high pressure oxygen service, it is possible to use organic seals, lubricants, or filling liquids, provided their oxygen compatibility has been checked. However, fire incidents in oxygen systems still occur because these materials ignite and burn. There are many reasons, such as incorrect design, contamination, faulty operation, unsuitable materials, etc., why this happens. Another cause that is overseen very often is proper maintenance on the user´s side. It is very important to replace in a component a worn out seal by the same one with identical oxygen compatibility properties. On the part of the producer or distributor of materials, batch testing and also a quality assurance system play a key role in the safety of an oxygen component. Any change in the manufacturing process of a material, or in its composition, and even its further processing may have an impact on its oxygen compatibility and finally on the component in which it is used. Numerous investigations by BAM over decades reveal the influence of minor constituents and fillers on a material´s oxygen compatibility. The test results in this paper show how important it is to regularly perform batch testing on nonmetallic materials used for oxygen service and to have a quality assurance system that helps minimize incidents where unsuitable materials are chosen by accident. KW - Oxygen compatibility KW - Nonmetallic materials KW - Pneumatic impact KW - Flammability KW - Components KW - Maintenance KW - Batch testing KW - Quality assurance PY - 2009 DO - https://doi.org/10.1520/JAI102309 SN - 1546-962X VL - 6 IS - 8 SP - 1 EP - 8 PB - American Society for Testing and Materials CY - West Conshohocken, Pa. AN - OPUS4-20740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Helmerich, Rosemarie A1 - Kühn, B. A1 - Nussbaumer, A. T1 - Assessment of existing steel structures - A guideline for estimation of the remaining fatigue life N2 - In many countries and regions, traffic infrastructure projects suffer from low funding. The budget is tight for new infrastructure building and, thus, the importance of inspection, maintenance and assessment of the existing traffic infrastructure increases. A new fatigue assessment guideline for the estimation of the remaining fatigue life of steel bridges has been written by technical committee 6 of the European Convention of Constructional Steelwork (ECCS). It will be a useful tool for the complementation of bridge management systems, used commonly for condition assessment. Design specifications and rules are harmonised throughout Europe. They are under constant development, but there is still a lack of forwarding and concentrating experiences as well as developing rules for the fatigue assessment on existing steel structures. This paper presents a guideline with a proposed fatigue assessment procedure for existing steel structures embedded in information about old materials and non-destructive testing methods for the evaluation of details (ECCS 2004, Assessment of existing steel structures). Particular attention is paid on remedial measures which are proposed for weak details and damages caused by fatigue. The developed fatigue assessment procedure can be applied to existing steel structures under cyclic loading in general, but the guideline concentrates on the existing traffic infrastructure made from old steel, because of the public importance. The proposed procedure summarizes, regroups and arranges the knowledge in the field of assessment on existing steel to be applied by practicing engineers. The procedure is a milestone in knowledge transfer from a state of scientific knowledge to state-of-the-art. KW - Fatigue KW - Assessment KW - Maintenance KW - Reliability KW - Material KW - Old steel KW - Remedial measures KW - Existing steel structures PY - 2007 SN - 1573-2479 SN - 1744-8980 VL - 3 IS - 3 SP - 245 EP - 255 PB - Taylor & Francis CY - London AN - OPUS4-15042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -