TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS T2 - EMAS 2015 - 14th European workshop on modern developments and applications in microbeam analysis N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass - thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - EMAS 2015 - 14th European workshop on modern developments and applications in microbeam analysis CY - Portoroz, Slovenia DA - 03.05.2015 KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles KW - High-resolution PY - 2015 SN - 978-90-8227-691-6 DO - https://doi.org/10.1088/1757-899X/109/1/012006 SP - NUR code:972 - Materials Science, 187-199 AN - OPUS4-33258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira, P. F. M. A1 - Torresi, R. A1 - Emmerling, Franziska A1 - Carmago, P. T1 - Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles JF - Journal of Materials Chemistry A N2 - Mechanochemistry is a promising alternative to solution-based protocols across the chemical sciences, enabling different types of chemistries in solvent-free and environmentally benign conditions. The use of mechanical energy to promote physical and chemical transformations has reached a high level of refinement, allowing for the design of sophisticated molecules and nanostructured materials. Among them, the synthesis of noble metal nanoparticles deserves special attention due to their catalytic applications. In this review, we discuss the recent progress on the development of mechanochemical strategies for the controlled synthesis of noble metal nanostructures. We start by covering the fundamentals of different preparation routes, namely top-down and bottom-up approaches. Next, we focus on the key examples of the mechanochemical synthesis of non-supported and supported metal nanoparticles as well as hybrid nanomaterials containing noble metals. In these examples, in addition to the principles and synthesis mechanisms, their performances in catalysis are discussed. Finally, a perspective of the field is given, where we discuss the opportunities for future work and the challenges of mechanochemical synthesis to produce well-defined noble metal nanoparticles. KW - Mechanochemistry KW - Nanoparticles PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512080 DO - https://doi.org/10.1039/D0TA05183G VL - 8 IS - 32 SP - 16114 AN - OPUS4-51208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kennedy, D.C. A1 - Orts-Gil, G. A1 - Lai, C.-H. A1 - Müller, Larissa A1 - Haase, A. A1 - Luch, A. A1 - Seeberger, P.H. T1 - Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake JF - Journal of nanobiotechnology N2 - Background Increasing use of silver nanoparticles (Ag-NPs) in various products is resulting in a greater likelihood of human exposure to these materials. Nevertheless, little is still known about the influence of carbohydrates on the toxicity and cellular uptake of nanoparticles. Methods Ag-NPs functionalized with three different monosaccharides and ethylene glycol were synthesized and characterised. Oxidative stress and toxicity was evaluated by protein carbonylation and MTT assay, respectively. Cellular uptake was evaluated by confocal microscopy and ICP-MS. Results Ag-NPs coated with galactose and mannose were considerably less toxic to neuronal-like cells and hepatocytes compared to particles functionalized by glucose, ethylene glycol or citrate. Toxicity correlated to oxidative stress but not to cellular uptake. Conclusions Carbohydrate coating on silver nanoparticles modulates both oxidative stress and cellular uptake, but mainly the first has an impact on toxicity. These findings provide new perspectives on modulating the bioactivity of Ag-NPs by using carbohydrates. KW - Silver KW - Nanoparticles KW - Carbohydrates KW - Nanotoxicology KW - Bio-Interfaces PY - 2014 UR - http://www.jnanobiotechnology.com/content/12/1/59 DO - https://doi.org/10.1186/s12951-014-0059-z SN - 1477-3155 VL - 12 IS - 59 SP - 1 EP - 8 PB - BioMed Central CY - London AN - OPUS4-34345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Fengchan A1 - Oiticica, Pedro Ramon Almeida A1 - Abad-Arredondo, Jaime A1 - Arai, Marylyn Setsuko A1 - Oliveira, Osvaldo N. A1 - Jaque, Daniel A1 - Fernandez Dominguez, Antonio I. A1 - de Camargo, Andrea Simone Stucchi A1 - Haro-González, Patricia T1 - Brownian Motion Governs the Plasmonic Enhancement of Colloidal Upconverting Nanoparticles JF - Nano Letters N2 - Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization. This study employs optical tweezers for the three-dimensional manipulation of an individual upconverting nanoparticle, enabling the exploration of plasmon-enhanced upconversion luminescence in water. Contrary to expectation, experiments reveal a long-range (micrometer scale) and moderate (20%) enhancement in upconversion luminescence due to the plasmonic resonances of gold nanostructures. Comparison between experiments and numerical simulations evidences the key role of Brownian motion. It is demonstrated how the three-dimensional Brownian fluctuations of the upconverting nanoparticle lead to an “average effect” that explains the magnitude and spatial extension of luminescence enhancement. KW - Upconversion KW - Plasmon enhancement KW - Optical tweezers KW - Brownian motion KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603551 DO - https://doi.org/10.1021/acs.nanolett.4c00379 VL - 24 IS - 12 SP - 3785 EP - 3792 PB - American Chemical Society (ACS) AN - OPUS4-60355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Traub, Heike A1 - Guttmann, P. A1 - Werner, St. A1 - Jakubowski, Norbert A1 - Schneider, G. A1 - Kneipp, J. T1 - Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes JF - Analyst N2 - Multifunctional composite nanoprobes consisting of iron oxide nanoparticles linked to silver and gold nanoparticles, Ag–Magnetite and Au–Magnetite, respectively, were introduced by endocytic uptake into cultured fibroblast cells. The cells containing the non-toxic nanoprobes were shown to be displaceable in an external magnetic field and can be manipulated in microfluidic channels. The distribution of the composite nanostructures that are contained in the endosomal system is discussed on the basis of surfaceenhanced Raman scattering (SERS) mapping, quantitative laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping, and cryo soft X-ray tomography (cryo soft-XRT). Cryo soft-XRT of intact, vitrified cells reveals that the composite nanoprobes form intra-endosomal aggregates. The nanoprobes provide SERS signals from the biomolecular composition of their surface in the endosomal environment. The SERS data indicate the high stability of the nanoprobes and of their plasmonic properties in the harsh environment of endosomes and lysosomes. The spectra point at the molecular composition at the surface of the Ag–Magnetite and Au–Magnetite nanostructures that is very similar to that of other Composite structures, but different from the composition of pure silver and gold SERS nanoprobes used for intracellular investigations. As shown by the LA-ICP-MS data, the uptake efficiency of the magnetite composites is approximately two to three times higher than that of the pure gold and silver nanoparticles. KW - Nanoparticles KW - SERS KW - Cell KW - LA-ICP-MS KW - X-ray tomography PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-371811 DO - https://doi.org/10.1039/c6an00890a SN - 0003-2654 VL - 141 IS - 17 SP - 5096 EP - 5106 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mino, L. A1 - Pellegrino, F. A1 - Rades, Steffi A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Spotto, G. A1 - Maurino, V. A1 - Martra, G. T1 - Beyond shape engineering of TiO2 nanoparticles: Post-synthesis treatment dependence of surface hydration, hydroxylation, Lewis acidity and photocatalytic activity of TiO2 anatase nanoparticles with dominant {001} or {101} facets JF - ACS Applied Nano Materials N2 - TiO2 anatase nanoparticles are among the relevant players in the field of light-responsive semiconductor nanomaterials used to face environmental and energy issues. In particular, shape-engineered TiO2 anatase nanosheets with dominant {001} basal facets gained momentum because of the possibility to exploit different and/or improved functional behaviors with respect to usual bipyramidal TiO2 anatase nanoparticles, mainly exposing {101} facets. Nevertheless, such behavior depends in a significant extent on the physicochemical features of surfaces exposed by nanosheets. They can vary in dependence on the presence or removal degree of capping agents, namely, fluorides, used for shape-engineering, and experimental investigations in this respect are still a few. Here we report on the evolution of interfacial/ surface features of TiO2 anatase nanosheets with dominant {001} facets from pristine nanoparticles fluorinated both in the bulk and at their surface to nanoparticles with F− free surfaces by treatment in a basic solution and to totally F− free nanoparticles by calcination at 873 K. The nanoparticles fluorine content and its subsequent evolution is determined by complementary techniques (ion chromatography, TOF-SIMS, XPS, AES, SEM-EDX), probing different depths. In parallel, the evolution of the electronic properties and the Ti valence state is monitored by UV−vis spectroscopy and XPS. The calcination treatment results in {001} facets poorly hydroxylated, hydrated, and hydrophilic, which appear as surface features consequent to the expected (1 × 4) reconstruction. Moreover, IR spectroscopy of CO adsorbed as probe molecule indicates that the Lewis acidity of Ti4+ sites exposed on (1 × 4) reconstructed {001} facets of calcined TiO2 nanosheets is weaker than that of cationic centers on {101} facets of bipyramidal TiO2 anatase nanoparticles. The samples have also been tested in phenol photodegradation highlighting that differences in surface hydration, hydroxylation, and Lewis acidity between TiO2 nanoparticles with nanosheet (freed by F− by calcination at 873 K) and bipyramidal shape have a strong impact on the photocatalytic activity that is found to be quite limited for the nanoparticles mainly exposing (1 × 4) reconstructed {001} facets. KW - Nanoparticles KW - TiO2 KW - F- doping KW - Shape-controlled nanoparticles KW - Nanosheets PY - 2018 DO - https://doi.org/10.1021/acsanm.8b01477 SN - 2574-0970 VL - 1 IS - 9 SP - 5355 EP - 5365 PB - ACS Publications CY - Washington, DC, U.S.A. AN - OPUS4-46157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Available particle-sizing techniques at work for the classification as a nanomaterial - How reliable it really is? N2 - The capability of currently available particle sizing techniques for reliable classification of materials that potentially fall under the EU Definition of a nanomaterial is discussed. A systematic quantitative evaluation of the sizing techniques is presented together with representative case studies of analysis of industrially relevant materials. Recommendations on the most appropriate and efficient use of techniques for different types of material are given. T2 - Frontiers of Nanomaterial Characterization CY - Tokyo, Japan DA - 28.05.2017 KW - Nanomaterial classification KW - Nanoparticles KW - Number-weighted median size KW - Particle size analysis KW - Characterization techniques PY - 2017 AN - OPUS4-40474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Unger, Wolfgang A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Auger electron spectroscopy T2 - Characterization of nanoparticles - Measurement processes for nanoparticles N2 - An introduction in the application of Auger Electron Spectroscopy to surface chemical analysis of nanoparticles is given. Auger Electron Spectroscopy is a mature method in the field of surface chemical analysis. The chapter addresses the physical basis of the method, the principal design of recent instruments together with modes of operation and options for the presentation of spectra, as well as different approaches for qualitative (including identification of chemical species) and quantitative surface analysis of elements. An application paragraph on surface chemical analysis of nanoparticles by AES or SAM introduces the different measurement approaches and sample preparation strategies applied by analysts. The analysis of nanoparticle ensembles, the so-called selected point analysis where a narrow primary electron beam is centered on an individual nanoparticle, and chemical mapping of individual nanoparticles (or a line scan across) are addressed. Existing literature is reviewed and informative case studies presented. Limitations and pitfalls in the application of AES in surface chemical analysis of nanoparticles are also addressed. KW - Auger Electron Spectroscopy KW - Surface chemical analysis KW - Imaging surface chemical analysis KW - Nanoparticles KW - Nanotechnology PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00020-1 SP - 373 EP - 395 PB - Elsevier CY - Amsterdam AN - OPUS4-50119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieg, H. A1 - Krause, B. A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Kästner, Claudia A1 - Hansen, Ulf A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Artificial digestion of aluminium-containing nanomaterials and their effects on the gastrointestinal tract in vitro N2 - Although aluminium is one of the most common elements in the biosphere, up to now little is known about its impact on human health. aluminium and its chemical derivatives are highly abundant in food, food contact materials and consumer products. Humans are exposed to aluminium via the gastrointestinal tract (GI tract). Exposition can change substantially due to consumer behavior since aluminium is also a compound of numerous food additives. Recently, aluminium exposition is increasingly considered to cohere with cancer and neurodegenerative disorders. Lately, due to an increasing attentiveness on this topic, limiting values for food additives have been tightened by the EFSA. However, cellular effects of aluminium and especially aluminium-containing nanomaterials, that represent a significant part of chemicals found in food products, are widely unknown and in the focus of our research activities, for example in the bilateral SolNanoTOX project. We established an in vitro simulation system of the GI tract, where nanomaterials undergo the different physiological, chemical and proteinbiochemical conditions of saliva, gastric juice and the intestine. The artificially digested nanomaterials, as well as soluble aluminium chloride as ionic control substance, were subjected to several analytical and biochemical methods to characterize their change of appearance and their cytotoxic effects on intestinal cellular models. We observed the fate of the nanomaterials during typical pH-values of saliva, gastric and intestinal juice with Dynamic light scattering measurements and ICP-MS in the single particle mode. After observable disappearance at pH 2 the particles recovered in the simulated intestinal fluid. The simulation of the GI tract, mainly the change of pH settings, can lead to a certain chemical activation of aluminium that can increase bioavailability in the intestine after oral uptake of aluminium-containing food products. In vitro assays like CTB, MTT and cellular impedance measurements showed that there were no acute cytotoxic effects measurable after a period up to 48h after incubation, comparable to undigested particles. In contrast, high amounts of aluminium ions showed synergistic effects on cell viability compared to non-digested aluminium ions. Although toxicological potential of Al ions to healthy tissue appears to be low, increased hazardous potential cannot be ruled out to pre-damaged tissue and can have a relevance in risk assessment for special consumer groups with for example chronical intestinal inflammation or dietary eating behavior combined with high exposure to Al-containing food products. T2 - 82nd Annual Meeting of the German Society for Experimental and Clinical Pharmacology and Toxicology CY - Berlin, Germany DA - 29.02.2016 KW - Nanoparticles KW - Digestion KW - SAXS KW - Cytotoxicity PY - 2016 AN - OPUS4-36026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Aqueous Dispersions of Polypropylene: Toward Reference Materials for Characterizing Nanoplastics JF - Macromolecular Rapid Communications N2 - Microplastics and nanoplastics pollute the natural environment all over the world, but the full extent of the hazards posed by this waste is unclear. While research on microplastics is well advanced, little work has been done on nanoplastics. This discrepancy is mainly due to the lacking ability to detect nanoplastics in biologically and environmentally relevant matrices. Nanoplastics reference materials can help the development of suitable methods for identifying and quantifying nanoplastics in nature. The aim is to synthesize nanoplastics made from one of the most commonly used plastics, namely polypropylene. An easy way to produce long-term stable aqueous dispersions of polypropylene nanoparticles (nano polypropylene) is reported. The nanoplastic particles, prepared by mechanical breakdown, show a mean hydrodynamic diameter of D h = 180.5 ± 5.8 nm and a polydispersity index of PDI = 0.084 ± 0.02. No surfactant is needed to obtain dispersion which is stable for more than 6 months. The colloidal stability of the surfactant-free nano polypropylene dispersions is explained by their low zeta potential of 𝜻 = −43 ± 2 mV. KW - Nanoparticles KW - Reference Material KW - Nanoplastics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571799 DO - https://doi.org/10.1002/marc.202200874 SN - 1022-1336 VL - 44 IS - 6 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Verhassel, A. A1 - Shinde, S. A1 - Kimani, Martha Wamaitha A1 - Guedes, I. A1 - Sellegren, B. A1 - Rurack, Knut A1 - Tuomela, J. A1 - Härkönen, P. T1 - Application of novel tumor cell glycan-specific nanoprobes for detecting and targeting breast and prostate cancer N2 - Glycosylation is a post-translational modification that is involved in the regulation of many biological processes. The glycosylation pattern in cancer cells differs from that in normal cells. One of the main alterations that has been observed in several cancers is the increase of sialic acids at the end of the glycan. The increase of sialic acids and other alterations affect development and progression of tumors and are found to play an important role in cancer invasiveness and metastasis. Molecularly imprinted polymers (MIPs) are synthetic recognition elements that show high selectivity and affinity for their targets. These polymers show promising applications in detection methods for cancer cells. In this study newly synthesized MIPs, labelled with a nitrobenzoxadiazole (NBD) fluorophore, are investigated for their specificity and utility in the detection of cancer cell-related sialic acids. T2 - Biomarkers – methods and technologies CY - Malmö, Sweden DA - 25.10.2018 KW - Nanoparticles KW - MIPs KW - Cancer PY - 2018 AN - OPUS4-46490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Muguruza, A.R. A1 - Odyniec, M.L. A1 - Manhota, M. A1 - Habib, Z. A1 - Rurack, Knut A1 - Blair, J.M.A. A1 - Kuehne, S.A. A1 - Walmsley, A.D. A1 - Pikramenou, Z. T1 - Antibiotic entrapment in antibacterial micelles as a novel strategy for the delivery of challenging antibiotics from silica nanoparticles JF - Microporous and Mesoporous Materials N2 - Silica materials are popular in biomedical applications as composites and drug delivery platforms due to their low toxicity and biocompatibility. Mesoporous silica nanoparticles are attractive drug delivery systems based on their porous silica framework with high surface area. In the preparation of mesoporous silica frameworks, most commonly, MCM-41, the efficient removal of the template responsible for introducing porous networks, cetyltrimethyl ammonium bromide (CTAB), is a critical step due to the template’s high toxicity in the environment and human health. In this work, we present a new one-pot approach of introducing challenging antibiotics within a silica framework without the need of toxic templates, but instead using micelle formation by an antibacterial agent. We demonstrate that micelles formed by cetylpyridinium chloride (CPC), a known antibacterial agent, entrap antibiotics such as rifampicin and ciprofloxacin. Extensive NMR studies elucidate the precise localisation of the antibiotic within the CPC micelle. Ciprofloxacin is placed between the outer and palisade region while rifampicin is located further into the hydrophobic CPC micelle core. In both cases, the formation of the silica framework can be built around the CPC-antibiotic loaded micelles. The resulting silica nanoparticles show loading of both CPC and antibiotic agents, porosity and dual antibacterial release upon disruption of the micelle within the silica framework. The design not only provides a strategy of a therapeutic design to form porous frameworks but also highlights the potential of precise antibiotic dose and release in nanoparticle systems. KW - Silica KW - Nanoparticles KW - Antibiotics KW - Drug delivery KW - Surfactants PY - 2024 DO - https://doi.org/10.1016/j.micromeso.2023.112841 SN - 1387-1811 VL - 363 SP - 1 EP - 11 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-58534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Benettoni, P. A1 - Stryhanyuk, H. A1 - Wagner, S. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Tentschert, J. T1 - Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach Task2.5 N2 - The final results of Task 2.5 "Optimization of sample preparation for characterization of ENPs using TOF-SIMS under real-life conditions (a.) UfZ: polymer template; b.) BAM: pressing of pellets)" were presented. T2 - ACEnano General Meeting CY - Amsterdam, The Netherlands DA - 05.03.2020 KW - Nanoparticles KW - ToF-SIMS KW - Preparation PY - 2020 AN - OPUS4-50572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Analysis of TiO2 nanoparticles – Various activities at BAM N2 - The presentation goes into the characterization of TiO2 engineered nanoparticles within EU/FP7 SETNanoMetro Project and the nanomaterial classification according to the EC definition tested within EU/FP7 NanoDefine Project. Further, ISO/TC 229/JWG 2 activities related on ISO standards in development and inter-laboratory comparisons on measurement of nanoparticle size and shape distribution by SEM and TEM are discussed. T2 - Seminar CY - PTB Braunschweig, Germany DA - 23.03.2017 KW - Nanoparticles KW - Electron microscopy KW - Nanomaterial KW - Standardization KW - Inter-laboratory comparison PY - 2017 AN - OPUS4-39527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Durande, B. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello-Nuñez, S. A1 - Ábad-Alvaro, I. A1 - Goenaga-Infante, H. T1 - Analysis of Particle Size Distribution for Bimodal Model Nanoparticles by Scanning Electron Microscopy N2 - The present study addresses the capability of measurement of relative particle number concentration by scanning electron microscopy for model bimodal silica and gold samples prepared in the frame of the European research project “nPSize - Improved traceability chain of nanoparticle size measurements” as candidate reference nanoparticles. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Silica KW - Gold KW - Electron microscopy KW - Particle size distribution PY - 2020 AN - OPUS4-51112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rades, Steffi A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Garcia, Sarai A1 - Gomez, Estibaliz A1 - Blanco, Miren A1 - Alberto, Gabriele A1 - Martra, Gianmario A1 - Hodoroaba, Vasile-Dan T1 - Analysis of functionalization of TiO2 nanoparticles and various substrates by means of SEM-EDX, AES and ToF-SIMS N2 - The physico-chemical characteristics of TiO2 coatings can greatly influence their final performance. In SETNanoMetro, different deposition procedures are being set for applying films of TiO2 NPs with defined and homogenous thickness on supports of interest for the applications studied in the project. The selected substrates are the following: (i) Silica glasses for photocatalytic measurements, (ii) Ti-alloys for orthopedic and/or dental prostheses, and for cell cultures, and (iii) Conductive glasses (e.g. Fluorine doped Tin Oxide, FTO) for dye-sensitized solar cells. From the different film deposition procedures studied within the project Self-assembly of TiO2 NPs in multiple layers was selected. For this, surface modification of the substrate and of TiO2 nanoparticles (NPs) with e.g. silane coupling agents is a prerequisite. First attempts to prepare the self-assembled coating on the functionalized glass substrates seem to indicate that the functionalized NPs adhere to the substrates, even if the final coatings were not homogenous and presented agglomerates. ToF-SIMS results support this outcome. In order to use the layer-by-layer deposition technique for the formation of TiO2 films by controlled self-assembly of the TiO2 NPs, the proper complementary moieties for the functionalization of the NPs were chosen. A first set of NPs has been produced by reaction with (3-aminopropyl)phosphonic acid (APPA) in order to functionalize the surface with free amino-groups. Then, the complementary NP set can be obtained from an aliquot of the first one, through the conversion of free surface amino-groups to aldehydes by reaction with glutaraldehyde. A proper approach for the functionalization of two types of TiO2, commercial P25 (Evonik) and SETNanoMetro-sample labelled UT001, with APPA was developed. A second set of NPs consisting of three types of TiO2 NPs, P25 and SETNanoMetro NPs (TiO2 NPs with high specific surface area > 150 m2/g and TiO2 NPs with low size < 20 nm) was functionalized with (3-aminopropyl)triethoxysilane (APTS). As for the previous set of NPs, the complementary NP set was obtained through the conversion of free surface amino-groups to aldehydes by reaction with glutaraldehyde. EDX, AES and ToF-SIMS spectra were collected and analyzed to demonstrate the presence of the surface functionalization of the different types of TiO2 NPs. T2 - Nanoscience meets Metrology - Synthesis, Characterization, Testing and Applications of Validated Nanoparticles - International Summer School CY - Turin, Italy DA - 04.09.2016 KW - Time-of-flight secondary-ion mass spectrometry KW - X-ray spectroscopy KW - Auger electron spectroscopy KW - Electron microscopy KW - Nanoparticles KW - Thin films PY - 2016 UR - http://www.setnanometro.eu/events/ AN - OPUS4-38064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Wirth, Thomas A1 - Holzweber, Markus A1 - Pellegrino, F. A1 - Martra, G. T1 - Analysis of Fluorine Traces in TiO2 Nanoplatelets by SEM/EDX, AES and TOF-SIMS N2 - The synthesis of TiO2 nanoplatelets with fluorine-containing reactants is carried out using Ti (IV) butoxide as precursor and concentrated HF as shape controller, the final product requires a working up in order to eliminate or at least to reduce the amount of residual fluorides, which is realized here by well-defined thermal treatment. Qualitative investigation of the bulk elemental composition by means of EDX of TiO2 nanoparticles (NPs) has identified fluorine in case of the as-synthesized samples. EDX spectra of thermally treated products exhibit either a fluorine content close to the limit of detection. The latter holds also true for the reference sample, TiO2 NPs of bipyramidal shape and prepared by a different synthesis route. For differentiation whether fluorine is present in the bulk or at the surface of the TiO2 nanoplatelets, top-surface sensitive AES and ToF-SIMS has been applied. Secondary ions of fluorine are detected in ToF-SIMS spectra of all samples, but could be roughly quantified by measurement of same reference sample as for EDX, namely TiO2 nano-bipyramids. This revealed that the amount of fluorine within1 nm depth beneath the surface is reduced in the thermally treated specimen compared to the raw product down to a content about as low as in the reference sample. AES allows analyzing analysis of the first few nanometers from the top-surface of individual NPs by point analysis. An F KLL peak has been detected at the surface of samples of as-prepared TiO2 nanoplatelets under optimized measurement conditions, but was not detectable after their calcination, which is in agreement with ToF-SIMS results. Moreover, high resolution AES on single TiO2 nanoplatelets elucidated that the surface atomic layers surrounding the TiO2 nanopaltelet contain fluorides before thermal treatment of the NPs. T2 - 17th European Conference on Applications of Surface and Interface Analysis ECASIA 2017 CY - Montpellier, France DA - 24.09.2017 KW - Titania KW - Nanoparticles KW - Fluorine KW - SEM/EDX KW - Auger Electron Spectroscopy KW - Nanoplatelets PY - 2017 AN - OPUS4-42656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Gemeinert, Marion A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial classification of powders N2 - The EU recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. Within the European Project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nanomaterial or non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nanomaterial or non-nanomaterial. The correct identification of a nanomaterial by VSSA method (positive test) is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape. For particles containing micro-pores or having a microporous coating, false positive results will be produced. Furthermore, broad particle size distributions – as typically for ceramic materials – as well as multi-modal size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and improve the method. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft mit Symposium Hochleistungskeramik CY - München, Germany DA - 10.04.2018 KW - VSSA KW - Nanoparticles PY - 2018 AN - OPUS4-45097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Advanced methods for nanomaterial characterization N2 - At the Final Outreach Event of the European FP7 NanoDefine project the results achieved during 4 years of intensive research and development work (2013-2017) with relevant stakeholders and wider community, and their practical implications and impact are presented and discussed. The newly developed particle-size related measurement tools and their practical suitability and applicability to classify materials, formulations and products according to the EC recommendation on the definition of a nanomaterial (2011/696/EU) are demonstrated. T2 - Final Outreach Event “Classification of nanomaterials according to the EU definition” CY - Brüssel, Belgium DA - 19.09.2017 KW - Nanomaterial KW - Nanoparticles KW - Particle sizing techniques KW - Nanomaterial classification PY - 2017 AN - OPUS4-42390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -