TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Quantification of sulfur in copper metals and its alloys by ICP-IDMS N2 - Sulfur is one of the major impurity elements in copper. Previously applied methods for the quantification of sulfur in copper and other pure metals revealed a lack of traceability and showed inconsistent result. Therefore, in this study a procedure was developed for the quantification of total sulfur in copper at low concentration levels using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). A major challenge for the quantification of sulfur in copper (alloyed/unalloyed) by ICPMS is the copper matrix itself, causing matrix effects and making an extensive cleaning (cones, extraction lens) necessary after measurements. Matschat et al investigated the analysis of high-purity metals (including copper) by high resolution ICP-MS and found that the copper matrix shows strong matrix effects on the sensitivity resulting from Cu deposition on the cones. Therefore, the major part of the copper matrix has to be separated, which was accomplished by adding ammonia which forms a complex with the copper while releasing the sulfur. This was followed by a chromatographic separation using a weak cation resin. After that the sulfur fraction was further purified by chromatographic means using an anion exchange method followed by a chelating resin. The anion exchange resin (AG1X8), however, is selective to sulfate and sulfite but less-selective to sulfide. Therefore, when quantifying total sulfur in copper, the different species of sulfur need to be oxidized to sulfate prior to the sulfur-matrix separation on the AG1X8 resin in order to avoid any measurement bias. When applying the HPA oxidation with concentrated HNO3 and H2O2 a complete conversion from sulfide and sulfite to sulfate could be achieved. The recovery of all investigated sulfur species is quantitative within measurement uncertainties. The copper samples investigated in this study contain copper in the range of 0.85-0.99 kg·kg-1 and zinc from <10 to 300 g·kg-1. Approximately 0.10-0.25 g of these samples were used to perform the sulfur-copper separation. After applying the complete three stage separation procedure the mass fractions of both elements were significantly reduced to below 400 ng·g-1 for copper and below 50 ng·g-1 for zinc, respectively. The developed procedure shows high performance, especially concerning high efficiency in matrix removal (> 99.999%) while keeping the recovery of sulfur above 80%. The procedure blank was determined by IDMS as well and yielded values for the individual IDMS measurement sequences ranging from 3 ng to 53 ng. The average of these individual procedure blanks (n=22) was calculated and yielded a total procedure blank of 14 ng sulphur with standard deviation of 12 ng. The limit of detection (LOD, blank+3SD) calculated on this basis was 0.20 µg·g-1 while the limit of quantification (LOQ, blank+10SD) was 0.54 µg·g-1, when considering a sample weight of 0.25 g. The quantification of low sulfur contents (< 15 µg/g) by conventional IDMS is hindered by the very high Cu/S ratio, which clearly affects the separation in a negative way: The recovery of sulfur dropped to about 30 % for four replicates, while two further replicates even showed recoveries below 10%. To enable measurement without completely changing the separation procedure, an exact amount of sulfur was added prior to spiking, such that the sulfur mass fraction was shifted to the optimum working range of the separation procedure. Thus exact amounts of sulfur were added to enhance the mass fraction of sulfur from 15 µg·g-1 to 40 µg·g-1, then the IDMS analysis was performed as usual and finally the added sulfur amount was subtracted. The so obtained measurement result agreed well with the certified value within the uncertainties. The relative expanded measurement uncertainties for conventional IDMS are below 1%. When applying the modified IDMS procedure, where back-spike is added to the sample before spiking, the relative expanded measurement uncertainties are larger and up to 5%. With the presented sulfur-matrix procedure a working range from approximately 15 µg·g-1 to 1500 µg·g-1 can be achieved. The developed procedure for the quantification of low sulfur amounts in copper has been validated here via three different routes: first an inter-laboratory comparison at highest metrological level, second a step-by-step validation by checking each single step of the procedure and third the setup of a complete uncertainty budget. The procedure is sufficient to facilitate value assignment of total sulfur mass fraction in reference materials. Additionally, relative measurement uncertainties were calculated below 1 % and the measurement results are traceable to the SI, which is clearly demonstrated in this work. The procedure reported in this study is a new reference procedure for sulfur measurement in copper, well meeting the requirements of the two major purposes: the certification of reference materials and the assignment of reference values for inter-laboratory comparison. T2 - Winter Conference on Plasma Spectrochemistry CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Isotope dilution mass spectrometry KW - Sulfur-copper-sepration KW - SI traceability KW - Measurement uncertainty KW - ICP-MS KW - Sulfur species conversion PY - 2018 AN - OPUS4-44640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Quantification of sulphur in copper metals by isotope dilution LA-ICP-MS using polyethylene frits N2 - Sulphur is one of the relevant impurities in copper and its alloys affecting their material properties. To ensure the quality of copper products, fast direct solid sampling techniques are very attractive. However, for the calibration suitable matrix reference materials are required. For the certification of such reference materials appropriate, SI-traceable analytical methods are essential. Therefore, a procedure was developed to quantify total sulphur in copper by combining the classical isotope dilution (ID) technique and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Here, for the first time, polyethylene (PE) frits were used to prepare appropriate solid samples for the sulphur quantification in copper metals (alloyed/unalloyed) by isotope dilution LA-ICP-MS. The properties of the PE frit meet the requirements as porous material with high absorption efficiency, thermal and chemical resistance as well as low sulphur blank. Different copper reference materials were used to develop and validate the procedure. The copper samples were spiked with 34S, digested with nitric acid and then the digests were absorbed on PE frits. After drying, the frits were analysed by LA-ICP-IDMS using a Nd:YAG laser at 213 nm coupled to an ICP sector field mass spectrometer. It could be demonstrated, that the sample solution dispersed on the frits did not influence the 32S/34S ratio significantly even though the sulphur intensities were fluctuating along the scanned lines. Relative standard deviations of the isotope ratios were below 5 % in average between three line scans (except for the pure spike solution and procedure blank). The measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS after analyte-matrix separation. Plotting the mass fraction of sulphur in copper obtained by LA-ICP-IDMS versus those obtained by ICP-IDMS yields a linear curve with a correlation coefficient of 0.9999 showing a strong agreement between both techniques. The metrological traceability to the SI from the kg down to the sulphur mass fraction in copper is established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. T2 - 14th European Workshop on Laser Ablation (EWLA) CY - Pau, France DA - 26.06.2018 KW - ICP-MS KW - Laser ablation KW - Isotope dilution KW - Copper PY - 2018 AN - OPUS4-45569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Bettmer, J. T1 - Separation and quantification of silver nanoparticles and silver ions using reversed phase high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry in combination with isotope dilution analysis N2 - A reversed phase high performance liquid chromatography coupled to an inductively coupled plasma mass spectrometer (HPLC-ICP-MS) approach in combination with isotope dilution analysis (IDA) for the separation and parallel quantification of nanostructured and ionic silver (Ag) is presented. The main focus of this work was the determination of the ionic Ag concentration. For a sufficient stabilization of the ions without dissolving the nanoparticles (NPs), the eluent had to be initially optimized. The determined Ag ion concentration was in a good agreement with results obtained using ultrafiltration. Further, the mechanism of the NP separation in the HPLC column was investigated. Typical size exclusion effects were found by comparing results from columns with different pore sizes. Since the recovery rates decreased with increasing Ag NP size and large Ag NPs did not elute from the column, additional interactions of the particles with the stationary phase were assumed. Our results reveal that the presented method is not only applicable to Ag NPs, but also to gold and polystyrene NPs. Finally, IDA-HPLC-ICP-MS experiments in single particle mode were performed to determine the particle cut-off size. The comparison with conventional spICP-MS experiments resulted in a similar diameter and particle size distribution. KW - ICP-MS KW - Silver nanoparticles KW - HPLC KW - Isotope dilution analysis KW - Field flow fractionation KW - Toxicology PY - 2016 DO - https://doi.org/10.1016/j.chroma.2016.09.028 SN - 0021-9673 VL - 1468 SP - 102 EP - 108 PB - Elsevier B.V. AN - OPUS4-38642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying cellular uptake of metal-containing nanoparticles by LA-ICP-MS N2 - Nanoparticles (NPs) have potential applications in medical diagnostics, imaging, drug delivery and other kinds of therapy. Furthermore, studies concerning nanoparticle uptake by cells are important for risk assessment. Size, shape and surface modification of the NPs determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Understanding the different uptake mechanisms and involved processes require sub-cellular resolution to determine, for example, whether the nanoparticles are reaching the nucleus. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. However, sub-cellular imaging has traditionally been challenging to achieve due to a lack of sensitivity at small laser spots. But now novel laser ablation systems with improved sensitivity and washout time allow imaging at high lateral resolution with spot sizes down to 1 µm. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of metal-containing NPs. To indicate cell morphology the local distribution of naturally occurring elements in cells like P and Zn was measured, too. Our results show that LA-ICP-MS can be used to localise nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The potential of LA-ICP-MS for analysis at single cell level will be demonstrated. T2 - Euroanalysis 2017 CY - Stockholm, Sweden DA - 28.08.2017 KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Cell PY - 2017 AN - OPUS4-41883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by ICP-MS based techniques N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method offering high sensitivity and multi-element capability. By coupling a laser ablation (LA) system to an ICP-MS the analysis of different kinds of solid samples is possible. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of metal containing nanoparticles (NPs) in cell samples. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of NPs. Our results show that LA-ICP-MS can be used to localize nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. ICP-MS was used to determine the composition of the nanomaterials as well as the number of NPs in cells after acid digestion of the samples. T2 - Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - ICP-MS KW - Laser ablation KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by ICP-MS based techniques N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of metal containing nanoparticles (NPs) in cell samples. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of NPs. Our results show that LA-ICP-MS can be used to localize nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. ICP-MS was used to determine the composition of the nanomaterials as well as the number of NPs in cells after acid digestion of the samples. T2 - 13. Symposium „Massenspektrometrische Verfahren der Element­spurenanalyse“ & 26. ICP-MS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - ICP-MS KW - Nanoparticle KW - Cell KW - Laser ablation PY - 2018 AN - OPUS4-45860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by LA ICP-MS N2 - The interaction of nanoparticles (NPs) with cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the NPs determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of NPs in cell samples. Here LA-ICP-MS was applied for the imaging of individual cells to study the uptake and intracellular processing of metal-containing nanostructures. Additionally, the local distribution of naturally occurring elements in cells like P was measured to indicate cell morphology. The cells were incubated with different types of NPs under varying experimental conditions. For LA analysis, the cells were fixed and dried. Our findings show, that LA-ICP-MS is suitable for the localisation of nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physicochemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The results demonstrate the potential of LA-ICP-MS providing insight into NP uptake, intracellular distribution and cell-to-cell variation dependent on experimental parameters. T2 - Workshop on Laser Bioimaging Mass Spectrometry CY - Münster, Germany DA - 24.05.2018 KW - Imaging KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemke, Nora A1 - El-Khatib, Ahmed A1 - Theuring, F. A1 - Jakubowski, Norbert A1 - Vogl, Jochen T1 - Sulfur isotope dilution ICP MS for traceable protein quantification N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful method for the matrix-independent quantitative analysis of target elements. Developed for the use in inorganic trace analysis, ICP-MS is nowadays a valuable tool for bioanalytical questions. Especially the use of ICP-MS for quantitative proteomics by measuring heteroatoms has gained recognition in the last decade, considering that established quantification methods like organic mass spectrometry depend on labelling of the target protein or the existence of matched protein and peptide standards. The need for reliable quantification of proteins is continuously growing, but only a limited number of well-characterized and quantified protein standards are available so far. Accurately quantified, traceable protein standards are necessary to ensure comparability of measurements between laboratories, not only in basic research but also in a clinical context. One example of this is the Alzheimer’s disease biomarker tau protein. However, existing tau standards lack comparability, emphasizing the need for a well-quantified protein standard. Therefore, we developed a method for the quantification of pure proteins via sulfur isotope dilution ICP-MS (IDMS). As sulfur is present in two amino acids, cysteine and methionine, it exists in nearly all proteins and can be used for the quantification of proteins of known stoichiometry. We employed simple offline strategies for the separation of non-protein bound sulfur species. Quantification of these contaminations by IDMS allows for correction of the protein content and enables reliable protein quantification. We report the protein mass fractions of a standard reference material and commercially available proteins determined by sulfur IDMS, including the expanded uncertainties. The developed method can be applied for the reliable and traceable quantification of pure proteins for use as in-house standards. Here, we successfully used this method for the quantification of the tau protein. T2 - 53rd annual conference of the DGMS including 27th ICP-MS User's Meeting CY - Münster, Germany DA - 01.03.2020 KW - ICP-MS KW - Isotope dilution KW - Protein KW - Quantification KW - Tau protein PY - 2020 AN - OPUS4-50510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ecke, Alexander A1 - Westphalen, Tanja A1 - Retzmann, Anika A1 - Schneider, Rudolf T1 - The Fate of the Antibiotic Amoxicillin in the Aquatic Environment N2 - Contamination of the environment with antibiotics is of great concern as it promotes the evolution of antimicrobial resistances. In case of amoxicillin (AMX) in the aquatic environment, further risk arises from hydrolysis products (HPs) which can cause allergy. To assess these risks, a comprehensive investigation and understanding of the degradation of AMX is necessary. We investigated the hydrolysis rate of AMX in different types of water as well as the influence of temperature and irradiation. The content of the heavy metal ions copper and zinc was found to be crucial for the hydrolysis rate of AMX and stability of HPs. Eventually, a new degradation pathway for AMX could be elaborated and confirmed by tandem mass spectrometry (LC-MS/MS). T2 - Berliner Chemie in Praxis Symposium CY - Berlin, Germany DA - 07.10.2022 KW - Hydrolysis KW - Amoxicillin KW - LC-MS/MS KW - ICP-MS PY - 2022 AN - OPUS4-56026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Loehr, Konrad T1 - Towards single cell arraying for LA-ICP-MS N2 - Analysis of single cells via LA-ICP-MS is a technique with great potential, however manual targeting of single cells is laborious and therefore microarraying of cells looks promising. In this work, we investigate the potential of a commercial non-contact piezo dispenser arraying system (S3, Scienion AG, Berlin), equipped with a novel technology for single-cell isolation called CellenONE™ (Cellenion, Lyon). Usually if one aims to create a microarray of single cells via spotting a suitably diluted cell suspension, one will observe a Poisson-distributed cell number per spot. CellenONE™ overcomes this problem by controlling the number of cells optically in the piezo dispense capillary (PDC) via image recognition to obtain true single cell arrays. The figures of merit of the customized and optimized setup will be presented. In a proof of concept experiment we investigated the trace elemental fingerprint of THP-1 cells by LA-ICP-TOF-MS (Analyte G2, Teledyne Cetac; icpTOF, TOFWERK) and quantified two metal cell dyes, mDOTA-Ho (CheMatech, Dijon), and Ir-DNA intercalator (Fluidigm, San Francisco). For that, matrix matched calibration standards after Wang et al. were successfully prepared using the same arraying system. We believe that this novel approach opens new ways for automated quantitative single cell LA-ICP-MS. T2 - DIAGNOSTICS 8.0 CY - Berlin, Germany DA - 06.09.2018 KW - High throughput KW - Single cell KW - Laser ablation KW - ICP-MS KW - CellenONE PY - 2018 AN - OPUS4-45904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Saatz, Jessica A1 - Ascher, Lena A1 - Boyraz, B. A1 - Hahndorf, J. A1 - Schnorr, J. A1 - Schellenberger, E. A1 - Tauber, R. T1 - Unraveling the interaction of MRI contrast agents with tissue using LA ICP MS N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is increasingly used to study the distribution of metal-containing drugs, imaging probes and nanomaterials in connection with disease related changes and therapy progress. Additionally, biomolecules can be detected indirectly by using metal-tagged antibodies. The extracellular matrix (ECM) is, besides the cells, an important component of all body tissues. The macromolecular network of the ECM consists of structural proteins (e.g., collagen, elastin) and proteoglycans composed of highly negatively charged carbohydrates, the glycosaminoglycans (GAGs), which are covalently linked to a protein core. Many diseases, including inflammatory processes and tumors, are associated with characteristic ECM changes at an early stage. Recent studies have shown that contrast agents for magnetic resonance imaging (MRI), which are based on gadolinium containing chelate complexes or iron oxide nanoparticles, can bind themselves to ECM components. To elucidate the role of GAGs like keratan sulfate (KS) and its modification state in disease, highly specific tools are necessary. As a complement to conventional immunohistochemistry LA-ICP-MS was applied to investigate the distribution of KS in tissue thin sections using a well characterized anti-KS antibody labelled with metal ions. Furthermore, LA-ICP-MS was used for the detection of MRI contrast agents and the identification of their target cells and molecules in tissue samples from animal models, e.g. for cardiovascular diseases. The results show the possibilities of LA-ICP-MS for the elucidation of pathological tissue changes. T2 - European Workshop on Laser Ablation (EWLA 2022) CY - Berne, Switzerland DA - 12.07.2022 KW - Laser ablation KW - Imaging KW - ICP-MS KW - Antibody PY - 2022 AN - OPUS4-55315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -