TY - CHAP A1 - Telgmann, L. A1 - Lindner, U. A1 - Lingott, J. A1 - Jakubowski, Norbert ED - Prof. Dr. Golloch, Alfred T1 - Analysis and speciation of lanthanoides by ICP-MS T2 - Handbook of rare earth elements N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is based on formation of positively charged atomic ions in a high-frequency inductively coupled Argon plasma at atmospheric pressure. The ions are extracted and transferred from the plasma source into a mass analyzer operated at high vacuum via an interface equipped with a sampling and a skimmer cone. The ions are separated in the mass analyzer according to their charge to mass ratio. The ions are converted at a conversion dynode and are detected by use of a secondary electron multiplier or a Faraday cup. From an analytical point of view, ICP-MS is a well-established method for multi-elemental analysis in particular for elements at trace- and ultra-trace levels. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional analytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. For these applications, ICP-MS excels by a high sensitivity which is independent of the molecular structure and a wide linear dynamic range. It has found acceptance in various application areas and during the last decade ICP-MS is also more and more applied for detection of rare earth elements particularly in the life sciences. Due to the fact that all molecules introduced into the high temperature of the plasma in the ion source were completely dissociated and broken down into atoms, which are subsequently ionized, all elemental species information is completely lost. However, if the different species are separated before they enter the plasma by using adequate fractionation or separation techniques, then ICP-MS can be used as a very sensitive element-specific detector. We will discuss this feature of ICP-MS in this chapter in more detail at hand of the speciation of gadolinium-containing contrast agents. KW - Analysis of lanthanoides KW - ICP-MS KW - Speciation of Gd-containing MRI contrast agents PY - 2017 SN - 978-3-11-036523-8 SP - Chapter 5, 124 EP - 144 PB - De Gruyter AN - OPUS4-40238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Telgmann, L. A1 - Lindner, U. A1 - Lingott, J. A1 - Jakubowski, Norbert T1 - Analysis and speciation of lanthanoides by ICP-MS JF - Physical Sciences Reviews N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is based on formation of positively charged atomic ions in a high-frequency inductively coupled Argon plasma at atmospheric pressure. The ions are extracted and transferred from the plasma source into a mass analyzer operated at high vacuum via an interface equipped with a sampling and a skimmer cone. The ions are separated in the mass analyzer according to their charge to mass ratio. The ions are converted at a conversion dynode and are detected by use of a secondary electron multiplier or a Faraday cup. From an analytical point of view, ICP-MS is a well-established method for multi-elemental analysis in particular for elements at trace- and ultra-trace levels. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional analytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. For these applications, ICP-MS excels by a high sensitivity which is independent of the molecular structure and a wide linear dynamic range. It has found acceptance in various application areas and during the last decade ICP-MS is also more and more applied for detection of rare earth elements particularly in the life sciences. Due to the fact that all molecules introduced into the high temperature of the plasma in the ion source were completely dissociated and broken down into atoms, which are subsequently ionized, all elemental species information is completely lost. However, if the different species are separated before they enter the plasma by using adequate fractionation or separation techniques, then ICP-MS can be used as a very sensitive element-specific detector. We will discuss this feature of ICP-MS in this chapter in more detail at hand of the speciation of gadolinium-containing contrast agents. KW - Analysis of lanthanoides KW - ICP-MS KW - Speciation of Gd-containing MRI contrast agents PY - 2016 UR - http://adsabs.harvard.edu/abs/2016PhSRv...1...58T DO - https://doi.org/10.1515/psr-2016-0058 SN - 2365-659X SN - 2365-6581 VL - 1 IS - 11 SP - id. 58, 1 EP - 20 AN - OPUS4-40176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - Analysis of air pollutants in ambient and indoor aerosolsby TXRF - application examples N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments, as well as for enforcing air quality regulations. Typically, airborne particles are sampled over long time periods on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). Within the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling was combined for the first time with on-site total reflection X-ray fluorescence (TXRF) spectroscopy to develop a tool for quantifying particle element compositions within short time intervals and even on-site. This makes variations of aerosol chemistry observable with time resolution of only a few hours and with good size resolution in the PM10 range. A proof of principles of this methodological approach and the comparison to standard methods within the scope of a field campaign will be presented. Secondly, aerosol sampling and TXRF analysis seems suitable for the quantification of elements in indoor aerosols as well and may provide an important enhancement of existing methods for the analysis of organic species in aerosols (such as sampling and TD-GC/MS). As an example, the TXRF analysis of particles emitted from laser printers under controlled conditions in an environmental test chamber will be presented. T2 - TXRF Journal ClubB CY - Online meeeting DA - 24.02.2022 KW - Aerosol KW - TXRF KW - Cascade impactor KW - ICP-MS KW - Particles KW - Air quality monitoring KW - Element mass concentration PY - 2022 AN - OPUS4-54418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, Larissa A1 - Traub, Heike A1 - Esteban-Fernández, Diego A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Kneipp, Janina T1 - Bio- and immuno-imaging by use of laser ablation ICP-MS N2 - Imuno-histochemical staining (IHC) of cancer biomarker on tissue sections is one of the most important analytical techniques for cancer diagnosis although standardization and quality management is tedious and differ significantly from clinic to clinic. Combining established IHC staining strategies with modern quantitative methods would increase it`s potential. We used element mass spectrometry (ICP-MS) and a new ink-jet printed internal standardization approach in combination with IHC staining. The printing strategy was utilized to improve elemental image resolution and reproducibility of paraffin embedded breast cancer tissue sections in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after conventional IHC staining as a model system to investigate the new capabilities of this technique. T2 - European Winter Conference on Plasma Spectrochemistry 2016 CY - Tucson, Arizona, USA DA - 10.01.2016 KW - Laser Ablation KW - ICP-MS KW - Bio-Imaging PY - 2016 AN - OPUS4-36492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Alvarez, L. A1 - Gonzalez-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags JF - Microchimica Acta N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Nanocluster KW - Immunohistochemistry KW - Laser ablation KW - ICP-MS KW - Fluorescence KW - Bioimaging PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 SN - 1436-5073 SN - 0026-3672 VL - 185 IS - 1 SP - 64 EP - 72 PB - Springer CY - Vienna AN - OPUS4-44637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blanchard, V. A1 - Traub, Heike A1 - Biskup, K. A1 - Wieczorek, M. A1 - Saatz, Jessica A1 - Pagel, K. T1 - Central project for biochemical analysis of proteoglycans and glycosaminoglycans and for element-specific microscopy N2 - Nearly all disease processes are associated with variations of components of the extracellular matrix (ECM) that are typically observed during the development of inflammation. This concerns for example proteoglycans and their associated glycosaminoglycans (GAG), which have been shown to bind to cationic metal imaging probes due to their strong complexing activity. The complexing activity largely depends on the degree of GAG sulfation and/or carboxylation as well as on the GAG isomericity. In this central project, we investigate GAG structures from inflammatory disorders (namely cardiovascular diseases, inflammatory intestinal diseases and neuroinflammation) provided by researchers of the Collaborative Research Center at the molecular disaccharidic level using chromatographic and mass spectrometric methods. In parallel, the spatial localization and quantification of metal-based imaging probes are evaluated by LA-ICP-MS imaging. T2 - 1st International Symposium In vivo Visualization of Extracellular Matrix Pathology CY - Online Meeting DA - 27.05.2021 KW - Laser ablation KW - ICP-MS KW - MALDI PY - 2021 AN - OPUS4-52716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sötebier, Carina A1 - Bierkandt, Frank A1 - Bettmer, J. A1 - Rades, Steffi A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Characterization of Ag nanoparticles: limitation and advantages of field-flow fractionation N2 - Silver nanoparticles (Ag NPs) are widely used in consumer products due to their excellent antibacterial properties. Their broad application has led to a variety of recent regulation on their use and labelling. Thus, a highly specific analytical method for their characterization and quantification is needed. Due to their large separation range, field-flow fractionation (FFF) techniques are repeatedly applied for the analysis of NP. Limitations of FFF include quantification, sample loss and insufficient recovery rates. Another challenge can be non-ideal elution behavior of particles in complex and unknown matrices. The possible sources for sample losses of Ag NP have been studied using an asymmetric flow FFF (AF4) in combination with inductively coupled plasma mass spectrometry (ICP-MS). The influence of different parameters, for example the sample concentration, on the recovery rates and sample loss has been investigated. Using laser ablation ICP-MS, the Ag deposition on the membrane was located and quantified. Our results identified ionic silver as the main sources of sample loss. These results can be useful for further method improvement. However, when a Ag NP sample containing an unknown complex matrix is analyzed, FFF method optimization is challenging as the sample might show a shift in the retention times and lower recovery rates. In this case, ICP-MS experiment in the single particle mode (sp-ICP-MS) can be a useful addition to the FFF measurement. Here, upon assumption of spherical particles, the geometric diameters can be calculated. This fast and easy approach can be helpful in order to interpret the FFF fractograms and advice the FFF method optimization process. T2 - 18th International Symposium on Field- and Flow-Based Separations CY - Dresden, Germany DA - 22.05.2016 KW - Silver KW - Nanoparticles KW - Field-flow fractionation KW - ICP-MS PY - 2016 AN - OPUS4-36352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, P. A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition - Elemental Analysis in Complex Samples N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. T2 - CITAC Best Paper Award Ceremony CY - Online meeting DA - 21.06.2022 KW - Isotope dilution mass spectrometry KW - Standard addition KW - ICP-MS KW - Blank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2022 AN - OPUS4-55032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quétel, C. A1 - Vogl, Jochen A1 - Prohaska, T. A1 - Nelms, S. A1 - Taylor, P.D.P. A1 - De Bièvre, P. T1 - Comparative performance study of ICP mass spectrometers by means of U "isotopic measurements" JF - Fresenius' journal of analytical chemistry N2 - The performance of four commercially available ICPMS instruments of three different types was compared by means of uranium "isotopic measurements". Examined were two quadrupole sector (different generation, different manufacturer), one single detector double focusing magnetic sector and one multiple collector double focusing magnetic sector instruments. The same samples of the IRMM-072 series were used under routine conditions to measure the 233U/235U and the 233U/238U ratios which, in these samples, vary over almost three orders of magnitude from ~ 1 to ~ 2 · 10-3. Within expanded (k = 2) uncertainties, good agreement was observed between the certified values and the data internally corrected for mass-discrimination effects. The magnitude of the evaluated uncertainties was different for each type of instrument. With the multiple collector instrument, expanded uncertainties varied from - 0.04% to- 0.24% for the 233U/235U ratio, and from - 0.08% to - 0.27% for the 233U/238U ratio. They were ~ 1 to 5 times larger with the single detector magnetic sector instrument, and ~ 10 to 25 times larger with both quadrupole sector instruments. With the multiple collector instrument, repeatability of the measurements seemed to be limited by the difficulty of correcting properly for instrumental background, whereas with the single detector magnetic sector instrument the counting statistics was the only limitation (on smallest ratios). Apparent mass-discrimination was clearly found to be larger but more reproducible (and hence easier to correct for) in the case of magnetic sector instruments than for both quadrupole sector instruments. If space charge effects were the main source of mass-discrimination for all instruments, these results are in contradiction with the hypothesis of the size of mass-discrimination decreasing with the acceleration voltage. With the single detector magnetic sector instrument in particular (when operated by changing the ion energy only), our results pointed at more than only one major source of mass-discrimination, with variable size depending on the ratios measured. KW - ICP-MS KW - Isotope ratio KW - Uranium PY - 2000 DO - https://doi.org/10.1007/s002160000499 SN - 0937-0633 VL - 368 SP - 148 EP - 155 PB - Springer CY - Berlin AN - OPUS4-7218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jakubowski, N. A1 - Borrmann, S. A1 - Recknagel, Sebastian A1 - Roik, Janina A1 - Rickert, F. T1 - Comparison of peristaltic pumps used for sample introduction in Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) JF - Spectroscopy N2 - In this investigation, two conventional peristaltic pumps are compared with a new pump based on the “easy click” principle using a simultaneous ICP-AES instrument with standard operating conditions. It is found that the figures of merit achieved are quite comparable for all three pumps. Relative standard deviations (RSDs) range between 0.2% and 1.8%, and limits of detection as low as 0.1 μg/L have been achieved , demonstrating that the easy click principle of the new pump does not compromise the analytical figures of merit. KW - ICP-AES KW - Peristaltic pumps KW - ICP-MS PY - 2020 IS - 35 / S4 SP - 6 AN - OPUS4-52020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in two different electrolyte systems (NaCl and H2SO4 c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. To analyze the semiconducting properties of the passive film Mott-Schottky analysis was conducted. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX, ICP-MS and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - ISE Annual 72nd meeting CY - Online meeting DA - 29.08.2021 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53789 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of Chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EuroMat 2021 CY - Online meeting DA - 12.09.21 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of Chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Klöckner, P. A1 - Wagner, S. A1 - Ruhl, A.S. A1 - Eisentraut, P. A1 - Albrecht, M. A1 - Reemtsma, T. T1 - Determination of tire wear particles based on elemental composition N2 - In this presentation the use of ICP-MS for the analysis of tire wear particles in environmental samples is presented. T2 - Wassertagung der GdCh CY - Papenburg, Germany DA - 07.05.2018 KW - ICP-MS KW - Mikroplastik KW - Analytik KW - Reifenabrieb PY - 2018 AN - OPUS4-45201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Silke A1 - Meckelburg, Angela A1 - Recknagel, Sebastian A1 - Matschat, Ralf A1 - Panne, Ulrich T1 - Determination of trace elements in iron ore, cast iron and steel using the 7500cs JF - Agilent ICP-MS journal KW - Steel KW - Iron ore KW - Cast iron KW - ICP-MS PY - 2009 IS - 38 SP - 4 EP - 5 PB - Agilent Technologies CY - Santa Clara, CA, USA AN - OPUS4-19476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemke, Nora A1 - El-Khatib, Ahmed A1 - Theuring, F. A1 - Jakubowski, Norbert A1 - Vogl, Jochen T1 - Development of a method for protein quantification via isotope dilution ICP-MS for application on an Alzheimer’s biomarker N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful method for the matrix-independent quantitative analysis of target elements. Developed for the use in inorganic trace analysis, ICP-MS is nowadays emerging as a valuable tool for bioanalytical questions. Especially the use of ICP-MS for quantitative proteomics by measuring heteroatoms has gained popularity in the last decade, considering that established quantification methods like organic mass spectrometry depend on the existence of matched protein and peptide standards or labelling of the target protein. The need for reliable quantification of proteins is constantly growing, but only a limited number of well characterized and quantified protein standards are available so far. Not only in basic research, but also in a clinical context, accurately quantified, traceable protein standards are needed to ensure comparability of measurements between laboratories. One disease with a major impact on our ageing society is Alzheimer’s disease (AD), which is still challenging to diagnose. As this is also due to a lack in comparability and accuracy of existing biomarker assays, the community would greatly benefit from well quantified protein biomarker standards. In this work, we applied isotope dilution analysis (IDA) using ICP-MS to quantify proteins of known stoichiometry via their sulfur content. Sulfur is present in two amino acids, cysteine and methionine, and hence exists in nearly all proteins. Simple strategies were employed for the detection of low molecular sulfur species to correct for sulfur contaminants and allow for reliable quantification of various proteins. We report the protein mass fractions with expanded uncertainties of a standard reference material and commercially available proteins determined by sulfur IDA. The herein developed method can be applied for the reliable and traceable quantification of pure proteins and will be used for the quantification of an AD biomarker. Our target is the tau protein, as brain load and distribution of tau is highly correlated with the clinical progression of AD. T2 - ReMiND 2019 Biomolecules in Neurodegenerative Diseases CY - Braunschweig, Germany DA - 26.06.2019 KW - ICP-MS KW - Isotope dilution KW - Proteins KW - Quantification PY - 2019 AN - OPUS4-48464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan A1 - Osan, J. A1 - Czömpöly, O. A1 - Gross, A. A1 - Stoßnach, H. A1 - Stabile, L. A1 - Ochsenkuehn-Petropoulou, M. A1 - Tsakanika, L. A. A1 - Lymperopoulou, T. A1 - Goddart, S. A1 - Fiebig, M. A1 - Gaie-Levrel, F. A1 - Rissler, J. A1 - Kayser, Y. A1 - Beckhoff, B. T1 - Element mass concentrations in ambient aerosols, a comparison of results from filter sampling & ICP-MS ans cascade impactor sampling & mobile total reflection X-RAY fluorescence spectroscopy N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments and required by EU air quality regulations. Typically, airborne particles are sampled on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). Within the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling was combined with on-site total reflection X-ray fluorescence (TXRF) spectroscopy. The study aimed at a proof of principles for this new mobile and on-size tool for the quantification of aerosol element compositions and element mass concentrations within short time intervals of less than 12 h. In a field campaign the method’s technical feasibility could be demonstrated. The TXRF results were traced back to a stationary, reference-free XRS setup in the laboratory of the German national metrology institute PTB at the BESSY II electron storage ring in Berlin, Germany. Simultaneous PM10-filter sampling, followed by standardized lab-based analysis, allowed for a comparison of the field campaign data of both methods. As Fig. 1 shows, the correspondence between PM10 filter sampling and ICP-MS, and on the other hand, cascade impactor sampling and TXRF is quite encouraging. However, for some of the analysed elements, e.g. V and Pb, the observed deviations are higher than expected and this highlights the fact, that spectral deconvolution strategies for TXRF on cascade impactor samples still need some improvement. This work was supported by the EMPIR programme, co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme, through grant agreements 16ENV07 AEROMET and 19ENV08 AEROMET II T2 - 12th International Conference on Instrumental Methods of Analysis (IMA-2021) CY - Athens, Greece DA - 20.09.2021 KW - Aerosol KW - TXRF KW - Reference method KW - Cascade impactor KW - Ambient aerosols KW - Air quality monitoring KW - Element mass concentration KW - Size resolved chemical composition KW - Time resolved chemical composition KW - ICP-MS PY - 2021 AN - OPUS4-53597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Saatz, Jessica A1 - Ascher, Lena T1 - Elemental imaging by laser ablation ICP-MS N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is nowadays an established multi-elemental analysis and mapping technique. It was shown that LA-ICP-MS can visualize the elemental distribution within tissue thin sections or cell samples. Quantification is possible by using appropriate matrix-matched calibration samples. Besides naturally occurring elements and metals from contrast agents, biomolecules using metal-tagged antibodies were detected in different bio-medical samples. By combining the results with findings from histology, magnetic resonance imaging (MRI) and other techniques disease related changes like alterations of the extracellular matrix can be investigated. T2 - 4th Colloquium of CRC 1340 "Matrix in Vision" CY - Berlin, Germany DA - 09.04.2019 KW - Laser ablation KW - ICP-MS KW - Imaging PY - 2019 AN - OPUS4-47752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Völzke, Jule Lexa T1 - Herstellung und Charakterisierung Antigen-beschichteter Nanopartikel als Analoga von Virus-like Particles (VLP) T2 - Masterarbeit N2 - In dieser Arbeit wurden drei verschiedene Nanomaterialien auf ihre Bindungsfähigkeit zu Proteinen untersucht. Zu Beginn standen dabei die Herstellung stabiler Dispersionen der einzelnen Nanopartikel und die Stabilität der gebildeten Konjugate im Vordergrund. Der Nachweis einer erfolgreichen Konjugatbildung, sprich der Beschichtung von Nanopartikel mit Proteinen, wurde sowohl qualitativ mittels DLS-Messungen als auch über quantitative Protein-Bestimmungen erbracht. Für die Quantifizierung konnten verschiedene Methoden eingesetzt werden. Neben der klassischen Vorgehensweise, welche indirekt über die Quantifizierung von ungebundenem Protein im Überstand erfolgt, konnten ihm Rahmen dieser Arbeit verschiedene direkte Bestimmungsmethoden entwickelt werden. So wurden mittels kolorimetrischer Tests, wie dem BCA-Assay und dem Bradford-Assay, Nanodiamantdispersionen mit Hilfe einer Korrekturwellenlänge vermessen und quantifiziert. Ebenso zum Einsatz kam die Methode der Aminosäureanalytik, welche aufgrund ihrer guten Rückführbarkeit auf Aminosäurestandards Ergebnisse mit hoher Richtigkeit generieren kann und ebenso die Detektion kleiner Proteinmengen möglich macht. Nach den erfolgten quantitativen Betrachtungen wurden die Protein-beschichteten Nanopartikel auf ihre Anwendbarkeit als Analoga von Virus-like Particles (VLP) bei einer Immunisierung zur Gewinnung von polyklonalen Antikörpern gegen humanes Ceruloplasmin in Kaninchen überprüft. Es konnte mittels ELISA gezeigt werden, dass die Konjugate erfolgreich für die Herstellung von Antikörpern eingesetzt werden können und im zeitlichen Verlauf einer Immunisierung eine Steigerung des Antikörper-Titers zu erreichen ist. KW - DLS KW - Dynamische Lichtstreuung KW - Aluminiumoxid KW - Nanodiamant KW - Gold-Nanopartikel KW - BSA KW - Albumin KW - Protein G KW - Ceruloplasmin KW - Immunpräzipitation KW - Ultraschall KW - BCA KW - Bradford-Assay KW - AAAA KW - Aromatische Aminosäureanalytik KW - ICP-MS KW - NaCl-Methode PY - 2018 SP - 1 EP - 107 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54625 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Giesen, Charlotte T1 - ICP-MS and Elemental Tags for the Life Sciences N2 - Die induktiv gekoppelte Plasma Massenspektrometrie (ICP-MS) wurde aufgrund ihrer hohen Empfindlichkeit, des großen linearen dynamischen Messbereichs und ihrer Multielementfähigkeit für die Analytik von Biomolekülen eingesetzt. Jedoch wird das Potential dieser Technik außerhalb der ICP-Gemeinschaft selten genutzt. Daher wurden in dieser Arbeit ICP-MS-basierte Immunoassays für medizinische (Krebsdiagnostik, Toxizitätsstudien zu Cisplatin), biochemische (DNA Mikroarray, Einzelzellanalytik) und umweltrelevante (Lebensmittelanalytik) Anwendungen entwickelt. Die Detektion erfolgte durch chemische Markierungen. Die Laserablation (LA)-ICP-MS wurde für die direkte Analyse von festen Proben wie Mikroarrays und Gewebedünnschnitten eingesetzt. Ein Immunoassay zur Ochratoxin A (OTA) Bestimmung in Wein wurde entwickelt, und die ICP-MS mit der herkömmlichen photometrischen Detektion verglichen. Die Nachweisgrenze betrug 0.003 μg L-1, und der Quantifizierungsbereich lag zwischen 0.01 und 1 μg L-1 für beide Methoden. Für die LA-ICP- MS basierte DNA Mikroarray Detektion wurden Goldnanopartikel über Streptavidin-Biotin Bindungen eingeführt. In der immunhistochemischen Diagnostik werden üblicherweise für einen Patienten bis zu 20 Krebsmarker abgefragt, was zu einer Reihe von zeitaufwändigen Färbeprotokollen führt. Daher wurde hier die LA-ICP-MS als eine neue, multiplexfähige Detektionsmethode für die Analytik an Gewebeschnitten entwickelt. Hierzu wurden Lanthanide für die Detektion von bis zu drei verschiedenen Tumormarkern in Brustkrebsgewebe eingesetzt. Darüber hinaus wurde mittels Iodmarkierung eine LA-ICP-MS Methode entwickelt, in der ein 4 μm Laserstrahl ausreichend war für die Darstellung von einzelnen Zellen und Zellkernen. Iod wurde außerdem als interner Standard für Gewebeschnitte verwendet. Zusätzlich wurden Pt-Protein Komplexe mit 1D und 2D Gelelektrophorese getrennt und mit LA-ICP-MS analysiert. Die hohe räumliche Auflösung dieser Technik wurde anhand der Detektion von platinierten Proteinen in Rattennierengewebe auch in einer aktuellen Studie zur Toxizität von Cisplatin und dem daher notwendigen Schutz der Niere unter Beweis gestellt. N2 - Inductively coupled plasma mass spectrometry (ICP-MS) has been applied for the analysis of biomolecules due to its high sensitivity, wide linear dynamic range, and multielement capabilities. However, outside the elemental MS community the potential of this technique, e.g. for life sciences applications, is not yet fully exploited. Thus, the development of ICP-MS-based (immuno) assays for a wide range of medical (cancer diagnostics, cisplatin toxicity studies), biochemical (DNA microarray, single cell analysis), and environmental (analysis of comestible goods) applications was accomplished by utilization of chemical labels. Laser ablation (LA)-ICP-MS was employed for the direct analysis of solid samples like microarrays and thin tissue sections. An immunoassay was developed for ochratoxin A (OTA) determination in wine, and ICP-MS detection was compared to conventional photometry by gold nanoparticle tagging and horseradish peroxidase, respectively. Detection limits of the assay were optimized to 0.003 μg L-1, and the quantification range was 0.01–1 μg L-1 for both methods. For LA-ICP-MS-based DNA microarray detection, gold nanoparticle tags were specifically introduced via a streptavidin-biotin linkage. In immunohistochemistry (IHC), up to 20 tumor markers are routinely evaluated for one patient and thus, a common analysis results in a series of time consuming staining procedures. Hence, LA-ICP- MS was elaborated as a detection tool for a novel, multiplexed IHC analysis of tissue sections. Different lanthanides were employed for the simultaneous detection of up to three tumor markers (Her 2, CK 7, and MUC 1) in a breast cancer tissue. Additionally, iodine was employed as a labeling reagent, and a new LA-ICP-MS method for single cell and cell nucleus imaging was developed at 4 μm laser spot size. Iodine was also applied as a new internal standard for tissue samples. Moreover, Pt-protein complexes separated by an optimized 1D and 2D gel electrophoresis were analyzed by LA-ICP-MS. The high spatial resolution of this technique was further demonstrated in a current study of cisplatin toxicity and renal protective strategies in rat kidney tissue by detecting platinated proteins. T3 - BAM Dissertationsreihe - 83 KW - ICP-MS KW - Life Sciences KW - Nanoparticles KW - Elemental Tags PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-758 SN - 978-3-9814634-7-7 SN - 1613-4249 VL - 83 SP - 1 EP - 199 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-75 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -