TY - JOUR A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Juranyi, Fanni A1 - Böhning, Martin A1 - Zorn, Reiner A1 - Schönhals, Andreas T1 - Low-Frequency Vibrational Density of State of Janus-Polynorbornenes: The Dependence of the Boson Peak on the Nanophase-Separated Structure N2 - Inelastic incoherent neutron time-of-flight scattering was employed to investigate the low-frequency vibrational density of states (VDOSs) for a series of glassy Janus-poly(tricyclononenes), which consist of a rigid main chain and flexible alkyl side chains. Here, the length of the flexible side chains was systematically varied from propyl to octyl. Such materials have potential applications as active separation layers in gas separation membranes as a green future technology, especially for the separation of higher hydrocarbons. From the morphological point of view, the Janus polynorbornenes undergo a nanophase separation into alkyl side chain-rich nanodomains surrounded by a rigid polynorbornene matrix. Here, the influence of the nanophase-separated structure on the low-frequency VDOS is investigated from a fundamental point of view. The low-frequency VDOSs of these Janus polynorbornene show excess contributions to the Debye type VDOS known as the Boson peak (BP) for all side chain lengths. Due to the high incoherent scattering cross-section of hydrogen, most of the scattering comes from the alkyl side chain-rich domains. Compared to conventional glass-forming materials, in the considered Janus polynorbornenes, the BP has a much lower intensity and its frequency position is shifted to higher values. These experimental results are discussed in terms of the nanophase-separated structure where the alkyl chain-rich domains were constrained by the surrounding matrix dominated by the rigid backbone. With increasing alkyl chain length, the size of the alkyl chain-rich domains increases. The frequency position of the BP shifts linearly to lower frequencies with the size of these nanodomains estimated from X-ray measurements. The obtained results support the sound wave interpretation to the BP KW - Inelastic neutron scattering PY - 2023 DO - https://doi.org/10.1021/acs.macromol.3c00913 SN - 0024-9297 SP - 1 EP - 10 PB - ACS AN - OPUS4-57972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Gawek, Marcel A1 - Madkour, S. A1 - Schönhals, Andreas T1 - Confinement and localization effects revealed for thin films of the miscible blend Poly(vinyl methyl ether) / Polystyrene with a composition of 25/75 wt% N2 - Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface. KW - Thin polymer films KW - Broadband dielectric spectroscopy PY - 2019 DO - https://doi.org/10.1140/epje/i2019-11870-3 SN - 1292-895X VL - 42 IS - 8 SP - 101, 1 EP - 11 PB - Springer AN - OPUS4-48651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Böhning, Martin A1 - Zorn, Reiner A1 - Schönhals, Andreas T1 - Inelastic and quasielastic neutron scattering experiments on microporous membranes fro green separation processes N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. These polymers are characterized by a high permeability and reasonable permselectivity. The latter point is somehow surprising because for microporous systems a more Knudson-like diffusion is expected then a size dependent temperature activated sieving process. It was argued in the framework of a random gate model that molecular fluctuations on a time scale from ps to ns are responsible for the permselectivity. Here series of polymers of intrinsic microporosity (PIMs) as well as microporous polynorbornenes with bulky Si side groups and a rigid backbone are considered. The polymers have different microporosity characterized by high BET surface area values. First inelastic time-of-flight neutron scattering measurements were carried out to investigate the low frequency density of state (VDOS). The measured data show the characteristic low frequency excess contribution to the VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. It was found that the frequency of the maximum position of the Boson peak correlates with the BET surface area value. Secondly elastic scans as well as quasielastic neutron scattering measurements by a combination of neutron time-of-flight and backscattering have been out. A low temperature relaxation process was found for both polymers. This process was assigned to the methyl group rotation. It was analysed in terms of a jump diffusion in a three-fold potential. The analysis of the dependence of the elastic incoherent structure factor on the scattering vector yields the number of methyl groups which might be immobilized. The neutron scattering experiments were accompanied by fast scanning calorimetry and broadband dielectric investigations as well as atomistic molecular dynamic simulations. T2 - Kolloquiumsvortrag an der Technischen Universität München CY - Garching, Germany DA - 20.11.2023 KW - Polymers with intrinsic microporosity PY - 2023 AN - OPUS4-59036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Glass transition and glassy dynamics of thin polymer films and polymer nanocomposites N2 - Polymers at interfaces play a major role in a broad variety of applications ranging from engineering purposes (for instance polymer based nanocomposites) to high tech implications (for instance light emitting diodes). Here the glass transition and glassy dynamics is considered for epoxy-based nanocomposite with Layered Double Hydroxide nanofiller and for thin films of a misicble polymer blend of PVME/PS with thicknesses down to 7 nm. The materials are investigated by spectroscopic techniques (broadband and specific heat spectroscopy), as well as by fast scanning calorimetry and small- and wide-angle X-ray scattering. T2 - Seminarvortrag Columbia University CY - New York, USA DA - 11.03.2019 KW - Nanocomposites KW - Rigid amorphous fraction KW - Thin films KW - Interfaces PY - 2019 AN - OPUS4-47565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid Amorphous Phase in Polymer Nanocomposites as Revealed by Relaxation Spectroscopy N2 - In inorganic/polymer nanocomposites the polymer matrix region near a filler surface, termed as the interphase, is of topical interest due to its possible influence on the macroscopic properties of the material. The segmental dynamics of this interphase is expected to be altered, as compared to the pure matrix, which might percolate into the entire system. It was found that a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of the polymer segments onto the nanoparticles, yielding in their immobilization. Here, we employed a combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) in a form of Temperature Modulated DSC (TMDSC)) to investigate the structure and molecular mobility of Epoxy/Inorganic nanofiller composites with different nanoparticles geometries and contents. The two techniques show different perspectives on the glassy dynamics; BDS is sensitive to dipole fluctuations, whereas SHS senses entropy fluctuations. First, our dielectric relaxation investigations proved an existence of an additional process in nanocomposites, which is not present in the pure material. Due to the increasing intensity of the process with increasing filler content it was assigned as the α-process related to the segmental dynamics of polymer chains adsorbed onto the nanoparticles. Considering the expected high conductivity effects of the material, the dielectric data were analyzed by fitting a derivative of the HN function to a “conduction-free” loss spectra: ε''deriv=-(∂ε'/∂logω). Second, TMDSC measurements were used to study the specific heat capacity of nanocomposites in its nanofiller content dependence. Assuming that RAF is proportional to the decrease of the specific heat capacity step (Δcp) in the glass transition region of the nanocomposites, comparing to the pure material, the inorganic/polymer interphase was quantitatively analyzed and the amount of RAF estimated. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Boehmite KW - Nanocomposites KW - Rigid amorphous fraction KW - BDS KW - TMDSC PY - 2018 AN - OPUS4-45915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Molecular dynamics of an asymmetric PVME/PS Blend investigated by broadband dielectric and specific heat spectroscopy N2 - Over the past decades research on the molecular dynamics of miscible polymer blends are of topical interest in the literature, in an attempt to understand the segmental mobilty of individual components, as it is affected by blending. In general, miscible polymer blends exhibit a complex behavior of the molecular mobility. For an A/B blend the relaxation times of component A and component B are affected by the spatial local compositional heterogeneity, present in binary systems on a microscopic level, regardless of the macroscopic homogeneity. Here, a combination of broadband dielectric and specific heat spectroscopy was employed to study the dynamically asymmetric PVME/PS blend with seven different compositions, focusing on samples with high PS contents. Considering that PS is dielectrically invisible, BDS is a powerful technique to study the response of PVME, as it is affected by PS segments. In this work the well-known binary relaxation times distribution of PVME in a blend, originating from the spatial local heterogeneity, was studied over ten decades in frequency, for the first time in literature. Secondly, one of the detected processes, α’-relaxation, shows a crossover from high-temperature behavior (system in equilibrium) towards a low temperature regime, where PS undergoes the thermal glass transition, resulting in confined segmental dynamics of PVME within a frozen network of PS. Here, we introduce a precise mathematical tool to distinguish between the temperature dependency regimes of the process, and examine the composition dependence of the crossover temperature, detected by dielectric spectroscopy. Moreover, the dielectric data was compared in detail with results obtained by specific heat spectroscopy. This comparison provides new insights in the dynamics and dynamic heterogeneity of the PVME/PS blend system. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Polymer blends KW - Dielectric spectroscopy KW - Specific heat spectroscopy PY - 2018 AN - OPUS4-45917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Dynamics of nanoscopically confined PVME in thin films of an asymmetric miscible PVME/PS blend N2 - In recent years, substantial efforts have been devoted to investigating nanoscopic confinement of polymers, and its effect on glassy dynamics. Broadband Dielectric Spectroscopy (BDS) was used to study the dynamics of ultra-thin films of PVME/PS 50/50 wt% blend, employing a novel nano-structured capacitor sample arrangement. The investigated system shows a complex dynamic behavior. First, an α-relaxation, related to a bulk-like layer was found. Second, an α’-relaxation was observed, characteristic for dynamically asymmetric blends, where the out of equilibrium dynamics is attributed to weakly-cooperative PVME segments relaxing within a frozen environment of PS segments. Third, for thinnest films, an Arrhenius-like process was dominant in the dielectric spectra, indicating localized fluctuations of the segments. Relaxation rates of this process resembled that of the degenerated α-relaxation of the adsorbed layer, found for pure PVME [1], thus it was assigned accordingly. For thinnest films, this process undergoes a further confinement, due to the topological constraints, introduced by PS. Such multiple confinement effect has not been reported for ultra-thin films of polymer blends, before this study [2]. [1] Madkour, S. et al. ACS Appl. Mater. Interfaces 2017, 9, 7535. [2] Madkour, S. et al. ACS Appl. Mater. Interfaces 2017, 9, 37289. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Polymer blends KW - Thin polymer films KW - Dielectric spectroscopy KW - Specific heat spectroscopy PY - 2018 AN - OPUS4-45919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Rigid amorphous fraction (RAF) in epoxy/Boehmite and epoxy/LDH nanocomposites N2 - The interphase between the inorganic filler and the polymer matrix is considered as one of the most important characteristics of inorganic/polymer nanocomposites. The segmental dynamics of this interphase is expected to be altered as compared to the pure matrix, which might percolate into the entire system. For instance, it was found that a so-called Rigid Amorphous Phase (RAF) is formed by adsorption of segments onto the nanoparticles yielding to its immobilization. The RAF is available from the decrease of the specific heat capacity Δcp in the glass transition region of the nanocomposites. Here, precise Temperature Modulated DSC (TMDSC) was employed to study Δcp of epoxy/Boehmite nanocomposites with different nanofiller concentrations. Surprisingly, the investigated system showed an increase of Δcp with increasing filler concentration up to 10 wt%. This implies an increased fraction of mobile segments, and is in accordance with the found decreased value of the glass transition temperature Tg. Although for higher filler contents Tg further slightly decreases, Δcp decreases in contrary, indicating a formation of RAF. This behavior was discussed as a competition of mobilization effects, due to an incomplete crosslinking reaction, and the formation of RAF. T2 - 15thLähnwitzseminar on Calorimetry 2018 CY - Rostock, Germany DA - 04.06.2018 KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - Boehmite PY - 2018 AN - OPUS4-45148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid amorphous phase in polymer nanocomposites as revealed by dielectric relaxation spectroscopy and fast scanning calorimetry N2 - For inorganic/polymer nanocomposites a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate into the entire system, affecting the overall nanocomposite properties. A combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) in a form of Temperature Modulated DSC (TMDSC)) as well as Fast Scanning Calorimetry (FSC) was employed to investigate the structure and molecular mobility of nanocomposites based on Epoxy and Layered Doubled Hydroxides with different nanoparticle content. First, BDS investigations proved the existence of a process, which is present only for nanocomposites, assigned to the dynamics of polymer segments within RAF. Second, the amount of RAF was quantified by analyzing the change of specific heat capacity step of nanocomposites, comparing to the pure material. Thirdly, the glass transition of nanocomposites was studied with FSC, applying high heating rates (500-10 000 K/s). Considering that all techniques probe essentially the same molecular process, an activation plot was constructed, delivering a complete picture of the molecular mobility and structure of the polymer nanocomposites including RAF. T2 - American Physical Society (APS) March Meeting 2019 CY - Boston, MA, USA DA - 04.03.2019 KW - Nanocomposites KW - Rigid amorphous fraction PY - 2019 AN - OPUS4-47564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid Amorphous Phase in Epoxy-based Nanocomposites as Revealed by Dielectric Spectroscopy and Fast Scanning Calorimetry N2 - For inorganic/polymer nanocomposites a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate to the entire system, affecting the overall nanocomposite properties. A combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Temperature Modulated DSC (TMDSC)) as well as Fast Scanning Calorimetry (FSC) was employed to investigate the structure and molecular mobility of nanocomposites based on Epoxy and Layered Doubled Hydroxides with different nanoparticle content. First, BDS investigations proved the existence of a process, which is present only for nanocomposites, assigned to the dynamics of polymer segments within RAF. Second, the amount of RAF was quantified by analyzing the change of specific heat capacity step of nanocomposites, comparing to the pure material. Thirdly, the glass transition of nanocomposites was studied with FSC, applying high heating rates (0.5-10 kK/s). Considering that all techniques probe essentially the same molecular process, an activation plot was constructed, delivering a complete picture of the molecular mobility and structure of the polymer nanocomposites including RAF. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 01.04.2019 KW - Rigid amorphous fraction KW - Nanocomposites PY - 2019 AN - OPUS4-47762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Madkour, Sherif T1 - Multiple Glassy Dynamics of an Asymmetric PVME/PS Blend Investigated by Broadband Dielectric and Specific Heat Spectroscopy N2 - Over the past decades research on the molecular dynamics of miscible polymer blends is of topical interest in the literature, to understand the segmental mobility of individual components, as it is affected by blending. In general, miscible polymer blends exhibit a complex dynamic behavior. For an A/B blend the relaxation times of component A and component B are affected by the spatial local compositional heterogeneity, present in binary systems on a microscopic level, regardless of the macroscopic homogeneity. Here, a combination of broadband dielectric and specific heat spectroscopy was employed to study the dynamically asymmetric PVME/PS blend with seven different compositions, focusing on samples with high PS contents. Considering that PS is dielectrically invisible, BDS is a powerful technique to study the response of PVME, as it is affected by PS segments. Here, three separate relaxation processes were found by dielectric investigations, related to confined or constrained PVME segments due to the spatial local compositional heterogeneities, which is in contrary to the previous literature findings [1]. Moreover, the dielectric data was compared with results obtained by specific heat spectroscopy, where a fourth relaxation process was found, due to the cooperative fluctuations of PVME and PS. [1] Colmenero, J., Arbe, A. Soft Matter, 2007, 3, 1474. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 01.04.2019 KW - Specific heat spectroscopy KW - Polymer blends KW - Dielectric spectroscopy PY - 2019 AN - OPUS4-47764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Unexpected behavior of thin PVME/PS blend films investigated by specific heat spectroscopy N2 - The structure and molecular dynamics of thin polymer films are of topical interest of soft matter-physics. Commonly, spatial structural heterogeneities of 1D confined thin films (surface, bulk-like and adsorbed layer), are expected to alter the glassy dynamics, compared to the bulk. Here, Specific Heat Spectroscopy (SHS) was used, to investigate the glassy dynamics of thin films of an asymmetric miscible PVME/PS 25/75 wt% blend. SHS measurements showed a non-monotonous thickness dependence of the dynamic Tg, on the contrary to the previously investigated PVME/PS 50/50 wt%. For PVME/PS 25/75 wt% thin films (> 30 nm), due to the presence of PVME-rich adsorbed and surface layers, the bulk-like layer experienced a thickness dependent increase of PS concentration. This led to a systematic increase of dynamic Tg. Further decrease of the film thickness (< 30 nm), resulted in a decrease of dynamic Tg, ascribed to the influence of the surface layer, which has a high molecular mobility. This is the first study, which shows deviations of dynamic Tg of thin films, compared to the bulk, resulting from the counterbalance of the free surface and adsorbed layer. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Dynamics of nanoscopically confined PVME in thin films of an asymmetric PVME/PS blend N2 - In recent years, substantial efforts have been devoted to investigating nanoscopic confinement of polymers, and its effect on glassy dynamics. Broadband Dielectric Spectroscopy (BDS) was used to study the dynamics of ultra-thin films of PVME/PS 50/50 wt% blend, employing a novel nano-structured capacitor sample arrangement. The investigated system shows a complex dynamic behavior. First, an α-relaxation, related to a bulk-like layer was found. Second, an α’-relaxation was observed, characteristic for dynamically asymmetric blends, where the out of equilibrium dynamics is attributed to weakly-cooperative PVME segments relaxing within a frozen environment of PS segments. Thirdly, for thinnest films, an Arrhenius-like process was dominant in the dielectric spectra, indicating localized fluctuations of the segments. Relaxation rates of this process resembled that of the degenerated α-relaxation of the adsorbed layer, found for pure PVME, thus it was assigned accordingly. For thinnest films, this process undergoes a further confinement, due to the topological constraints, introduced by PS. Such multiple confinement effect has not been reported for ultra-thin films of polymer blends, before this study. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Ghasem Zadeh Khorasani, Media A1 - Schönhals, Andreas T1 - Competition of mobilization and immobilization effects of segmental dynamics in epoxy/Boehmite nanocomposites N2 - The polymer matrix region near a filler surface, termed as the interface, witnessed increasing interest, due to its possible influence on the macroscopic properties of the nanocomposite. The interphase is expecting to have different segmental dynamic, as compared to the pure matrix, which can percolate into the entire system. Here, the segmental dynamics of epoxy/Boehmite nanocomposite was studied by Broadband Dielectric Spectroscopy. It was found that an artificial relaxation process is present in the nanocomposite, on the contrary to the pure epoxy system. It was assigned to constrained fluctuations of polymer chains in the interfacial region, due to the nanofiller. However, the overall dynamic Tg of the system decreased with increasing filler concentration, indicating higher segmental mobility. This was in accordance with Temperature Modulated DSC investigations of specific heat capacity of the system, which was found to increase with increasing filler concentration, up to 10 wt%, indicating increasing mobility of the polymer matrix segments. Surprisingly, for the highest filler content, the heat capacity decreases, implying a formation of an immobilized rigid amorphous phase in the interfacial region. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Nanocomposites PY - 2018 AN - OPUS4-44503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A1 - Schönhals, Andreas T1 - Molecular Dynamics of nNanophase-Separated Janus Polynorbornenes for gas separation N2 - Janus polytricyclononenes (PTCN) with rigid backbones and flexible n-alkyl (n = propyl, butyl, hexyl, octyl, decyl) are novel, innovative materials that show potential in separating hydrocarbons. These superglassy polymers were designed to show an enhanced and controllable gas permeability via flexible alkyl side chains that promote mass transport, as opposed to conventional microporous polymers, where permeability is a function of the free-volume entities. PTCNs, investigated by small angle X-ray scattering (SAXS), show nanophase separation between the n-alkyl side chains and the backbones. The size of the nanodomains increases with the length of the n-alkyl side groups. In addition, for the alkyl chain-rich nanodomains a distinct α-relaxation was found by means of broadband dielectric spectroscopy (BDS) and temperature modulated DSC (TMDSC). The glass transition of the backbone-rich domains, which is beyond or near to the degradation of the materials, was evidenced by fast scanning calorimetry (FSC) by decoupling it from decomposition, employing high heating rates up to 104 K/s. Further, Janus PTCNs were studied by quasielastic neutron scattering (QENS) employing the backscattering IN16B (ILL, Grenoble) and time of flight FOCUS (PSI, Villigen) instruments. For an overview of dynamic processes setting in at different temperatures inelastic (IFWS) and elastic fixed window scans (EFWS) were conducted. IFWS showed that the segmental motions of alkyl-rich nanodomains shift to higher temperatures with increasing alkyl chain length, which agrees with SAXS and BDS findings. For the lowest side chain lengths an additional low temperature relaxation process was found, assigned to methyl group rotations. T2 - IDS 2022 CY - San Sebastian, Spain DA - 03.09.2022 KW - Gas separation KW - Membranes PY - 2022 AN - OPUS4-55899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Resolving the mystery of the molecular dynamics of epoxy-based materials using broadband dielectric spectroscopy and hypheneated calorimetry N2 - A detailed calorimetric and dielectric study on two epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and methyl tetrahydrophtalic acid anhydride (MTHPA) aas the polymer matrix and taurine-modified MgAL layered double hydroxide (T-LDH) and boehmite as nanofiller. The molecular dynamics investigation revealed an intrinsic structural heterogeneity of the epoxy materials. Moreover the polymer/particle interphase was qualitatively and quantitavely investigated. T2 - Online International Dielectric Society 2020 Workshop CY - Online meeting DA - 28.09.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - BDS KW - TMDSC PY - 2020 AN - OPUS4-51492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials N2 - This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: taurine-modified layered double hydroxide (T-LDH) and halloysite nanotubes (HNTs). The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. T2 - Abteilungsseminar 6. - FB 6.6 CY - Online meeting DA - 06.05.2021 KW - Broadband dielectric spectroscopy KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Rigid amorphous fraction KW - Flash DSC PY - 2021 AN - OPUS4-52697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Flash DSC investigations on nanocomposites and electrospun fibers containing nanoparticles N2 - It was found for inorganic/polymer nanocomposites that a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate into the entire system, affecting the overall nanocomposite properties. Here, the structure and molecular mobility of epoxy-based PNCs with different nanofillers (layered double hydroxide and boehmite) was studied by a combination of calorimetric and X-Ray scattering techniques. Temperature modulated DSC (TMDSC) showed that depending on the nanofiller, RAF can reach up to 40 wt % of the system or, on the contrary, the overall mobility of the matrix might increase due to the presence of particles. Such contrasting results, including the high amount of RAF, which was never shown before for epoxy-based PNCs, emphasize the importance of interfaces. Additionally, glass transition and glassy dynamics were investigated by a novel technique, Flash DSC (heating rates up to 10 kK/s) employed for the first time to a thermosetting system and electrospun fibers, which did not result in their degradation. It was used to study both the vitrification kinetics and glassy dynamics of the PNCs, for instance further confirming the presence of RAF and its impact on the overall material properties. T2 - 4th Mettler Toledo Flash DSC conference CY - Zurich, Switzerland DA - 25.11.2019 KW - Flash DSC KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS KW - Boehmite KW - Electrospun fibers PY - 2019 AN - OPUS4-50067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy and Corresponding Nanocomposites by Broadband Dielectric Spectroscopy and Hyphenated Calorimetry N2 - Polymer nanocomposites (PNCs) with inorganic nanofillers dispersed in a polymer matrix have been widely studied from the 1990s, since the pioneering work by Toyota Central Research. The possibility of producing advanced tailor-made, light weight and low-cost materials, inspired academic and commercial research towards numerous potential applications, facilitating PNCs to become a billion-dollar global industry. The introduction of nanoparticles (NPs) to a polymer matrix is expected to result in improved properties. The outstanding performance of PNCs is determined not only by the characteristics of the used components but also by their phase morphology, including the dispersion of NPs and interfacial properties. Understanding of structure-property relationships is particularly important for polymer nanocomposites with high industrial significance, such as epoxy-based materials reinforced with inorganic nanofillers. These PNCs have been successfully adopted by the marine, automotive and aerospace industries, although they are still rarely studied on a fundamental level. Therefore, this thesis aims for a detailed understanding of the structure, molecular mobility and vitrification kinetics first, of two epoxy-based materials with different network structures and second, of the corresponding nanocomposites with different alumina-based nanofillers. The first system considered (EP/T-LDH) was based on bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and taurine-modified layered double hydroxide (T-LDH) NPs. The taurine molecule bears additional functionalities that could enhance the interactions between the matrix and the nanofiller, improving the interphase formation. The seconds system (EP/BNP) was based on DGEBA and methyl tetrahydrophtalic acid anhydride (MTHPA) as a hardener, reinforced with boehmite nanoparticles (BNPs). The comparison of the two systems enables for a comparative study on the effect of different hardeners and the morphology and modification of the alumina-based nanofillers on the material behavior. The materials were investigated employing complementary techniques with different sensitivities and frequency windows. The following methodology was used: transmission electron microscopy (TEM), small – and wide – angle X-ray scattering (SAXS/WAXS), broadband dielectric spectroscopy (BDS), calorimetry in a form of conventional DSC and fast scanning calorimetry (FSC), as well as specific heat spectroscopy (SHS) in a form of temperature modulated DSC, temperature modulated FSC and static FSC by calculating the thermal relaxation rates from the cooperativity approach. The FSC method (based on adiabatic chip calorimetry to probe micrometer-sized samples) was successfully employed in this work, exploiting all its possibilities for the first time in literature for a PNC. Moreover, a systematic analysis technique was established to overcome the problem of vague glass transition regions observed for highly loaded PNCs in the heat flow and heat capacity curves. First, TEM, SAXS/WAXS and indirectly BDS and SHS were employed to obtain the information about the approximate morphology of the PNCs. It was found that epoxy-based materials exhibit a structural heterogeneity in a form of regions with different average crosslinking density. This was indicated by multiple-peak scattering pattern of the polymer matrix and two distinct α-processes (dynamic glass transition) related to the cooperative fluctuation of the epoxy network found by BDS and SHS. This was described for the first time for epoxy-based materials. The two α-relaxations were evidenced differently for the two systems, which is related to different network structures and dipole moments due to the employed hardeners. Nevertheless, structural heterogeneity is an intrinsic feature of these materials, independent of the type of hardener used for the network formation and nanofiller. In addition, matrix inhomogeneities were more pronounced with increasing nanoparticle content. Furthermore, a powerful new technique was applied for X-ray scattering data, using Monte Carlo fits, to describe the NPs dispersion throughout the whole sample volume (as opposed to the local investigations performed by most researches). Additional structural information of the two systems was extracted by BDS and SHS, such as qualitative and quantitative estimation of polymer segments physically adsorbed and/or chemically bonded onto the nanoparticles. Due to the immobilized character of this interphase with respect to the cooperative segmental motions, it is denoted as a rigid amorphous fraction (RAF). For instance, on the contrary to EP/BNP, for EP/T-LDH a dielectrically active process was found, related to the localized fluctuations within RAF. Moreover, the amount of RAF in EP/T-LDH was reaching up to 40 wt % of the system, whereas in EP/BNP it ranged between 1-7 wt %. In the latter case the presence of NPs was found to simultaneously increase and decrease the number of mobile segments, due to the interphase formation and changes in crosslinking density. The difference between the two systems was ascribed to the presence of additional amine functionalities in the T-LDH nanofiller. Second, employing BDS and SHS, a systematic study on the effect of NPs on the segmental dynamics was performed. For example, depending on the nanofiller, the α-processes related to regions with higher crosslinking density was found to shift to higher and lower temperatures with increasing T-LDH and BNPs concentration, respectively. The observed difference is due to the different synergism of the polymer matrix with the nanofiller. Third, a detailed investigation of the vitrification kinetics was performed with DSC and FSC. The concentration dependence of the glass transition temperature was found, similar to the behavior of the α-processes. It was shown that, in parallel to the detected main glass transition, epoxy-based materials can exhibit an additional low temperature vitrification mechanism. As expected from the two distinct α-processes, this behavior was however not discussed in prior studies for an unfilled network former. This finding was correlated to the structural heterogeneity evidenced by other techniques. This thesis, dealing with an in-depth research on the epoxy-based materials that are already successfully employed in numerous applications underlines the necessity of more fundamental research in this field. It shines light on the complexity of these systems and contributes to defining how the structure-property relationships can be determined by combining multiple experimental techniques and analytical methodology. T2 - PhD defense CY - Online meeting DA - 18.12.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS PY - 2020 AN - OPUS4-52035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas A1 - Qu, Xintong T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials by Broadband Dielectric Spectroscopy and Calorimetry N2 - Although in the last decades epoxy-based nanocomposites have been successfully adopted by the marine, automotive and aerospace industries they are still rarely studied on a fundamental level. This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: I) taurine-modified layered double hydroxide (T-LDH), II) boehmite (BNPs) and III) halloysite nanotubes (HNTs). Moreover, the effect of different hardeners (diethylene triamine and methyl tetrahydrophtalic acid anhydride) on the unfilled epoxy matrix is addressed as well. The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. The combination of these techniques proved an intrinsic spatial heterogeneity of epoxy-based materials, evidenced by two separate segmental relaxation processes. Although, depending on the hardener the response of the systems to calorimetric and dielectric investigations was different, in a broader sense similar conclusions can be extracted on the structural heterogeneity. As expected from the two distinct α-processes, it was shown that, in parallel to the main glass transition, epoxy-based materials can exhibit an additional low temperature vitrification mechanism, which was not discussed in prior studies for an unfilled network former. Furthermore, the interfacial region (so-called rigid amorphous fraction) was qualitatively and quantitatively addressed, in dependence of the employed nanofiller structure. T2 - Webinar University of Southern Denmark CY - Online meeting DA - 20.01.2021 KW - BDS KW - Nanocomposites KW - Epoxy KW - Rigid amorphous fraction KW - TMDSC KW - Flash DSC PY - 2021 AN - OPUS4-52036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -