TY - CONF A1 - Askar, Enis A1 - Holtappels, Kai T1 - Competence centre h2safety@bam N2 - In this presentation the current focus areas of the competence centre H2Safety@BAM are shown. The fields of competence include “Material properties and compatibility”, “Process and plant safety”, “Component testing, component safety and approval” as well as “Sensors, analytics and certified reference Materials. Moreover, the cross-cutting activities regarding “Education and training” and the testing possibilities and planed test facilities at the Test Site for Technical Safety (BAM TTS) are presented. T2 - VDMA P2X4A: P2X Technik-Treffen CY - Online meeting DA - 14.09.2023 KW - Hydrogen KW - Test area hydrogen safety KW - ModuH2Pipe PY - 2023 AN - OPUS4-58333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa T1 - Exploring the Technological Innovation System for Hydrogen Technologies - Four Essays on the Roles of Research, Innovation, and Safety N2 - Presentation of the doctoral thesis held at the PhD Colloquium of the Chair of Innovation Management, Freie Universität Berlin. Hydrogen has recently come into political and industrial focus due to its potential to advance the transition to a net-zero economy. Despite this recognized potential, the market ramp-up of hydrogen technologies has not yet been realized at large. Therefore, this thesis attempts to investigate how advances in hydrogen research, innovation, and safety link up to market formation using the Technological Innovation Systems (TIS) and Quality Infrastructure (QI) frameworks. Thereupon, the thesis formulates several recommendations for transitioning to a hydrogen economy. T2 - PhD Colloquium of the Chair of Innovation Management (Freie Universität Berlin) CY - Berlin, Germany DA - 09.01.2024 KW - Hydrogen KW - Research and innovation KW - Innovation system KW - Safety PY - 2024 AN - OPUS4-59400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Kant, Hanjo A1 - Schulze, Marcel A1 - Orchini, Alessandro T1 - Real scale safety investigations of hydrogen jet flames at high pressure N2 - In order to reduce the human footprint of CO2 emissions and limit global warming effects hydrogen combustion is becoming increasingly important. To enable fuel cells and gas turbines to operates this carbon free fuel, unprecedently large amounts of hydrogen need to be produced and safely transported and stored. The investigation of the effects of accidents involving hydrogen is therefore becoming of outmost importance. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the release of hydrogen from a leakage with subsequent ignition. The resulting jet flame must be characterized with respect to the thermal radiation emitted into the environment to define safety regulations. Various models that characterize the resulting flame shape and radiation already exist in the literature, but these are mainly based on empirical data from hydrocarbon jet flames.[1-4] To verify these models, a H2 Jet Flame project conducted at BAM, is investigating the safety of momentum driven hydrogen jet flames. For this purpose, large-scale tests are carried out at the Test Site Technical Safety (BAM-TTS). The object of the investigations is to assess the effects of real scale release scenarios regarding flame geometry and the thermal radiation emitted. Parameters such as release angle, leakage diameter (currently 1 mm to 10 mm), pressure (currently up to max. 250 bar) and mass flow (up to max. 0.5 kg/s) are varied. In addition, influences such as the type of ignition, ignition location as well as delayed ignition can also be investigated. The gained knowledge will be compared with existing jet flame models, to validate these and identify a possible need for further development. In particular, the focus will be laid on the thermal radiation of hydrogen flames. The challenge here is the visualization and characterization of the flame geometry in an open environment. Visualization is performed using infrared (IR) camera systems from at least two viewing angles. Measurements of the heat radiation of jet flames, which can be found in the literature, are mostly based on unsteady outflow conditions.The experimental setup used here allows for the generation of a steady-state outflow for several minutes and thus a direct comparability with existing (steady-state) models. Furthermore, the tests can be carried out for comparative measurements with hydrocarbons (methane, etc.) as well as mixtures of hydrogen and hydrocarbons. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Gent, Belgium DA - 20.03.2024 KW - Hydrogen KW - Release KW - Jet flame KW - Thermal radiation PY - 2024 AN - OPUS4-59908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Kant, Hanjo A1 - Schulze, Marcel A1 - Orchini, Alessandro T1 - Thermal Radiation Investigations of Real-Scale Hydrogen Jet Flames at High Pressure N2 - In order to reduce global warming, the use of hydrogen as a renewable energy source is becoming more important. To enable this transition, unprecedently large amounts of hydrogen need to be safely transported and stored. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the release of hydrogen from a leakage with subsequent ignition. The resulting jet flame must be characterized with respect to the thermal radiation emitted into the environment to define safety distances. Various models that characterize the resulting flame shape and radiation already exist in the literature, but these are mainly based on empirical data from hydrocarbon jet flames. To verify the applicability of these models to hydrogen, real-scale tests are carried out at the BAM Test Site for Technical Safety (BAM-TTS) with the aim to assess the flame geometry and the emitted thermal radiation. Parameters such as leakage diameter (currently up to 30 mm), pressure (currently up to max. 250 bar) and mass flow (up to max. 0.5 kg/s) are varied. In particular, the focus will be laid on the measurement and modelling of the thermal radiation. The challenge here is the characterization of the flame geometry in an open environment and its impact on the thermal radiation. Existing heat radiation data from literature are mostly based on unsteady outflow conditions. The experimental setup used here allows for the generation of a steady-state outflow for several minutes and thus a direct comparability with existing (steady-state) models. Furthermore, stationary outflow tests with hydrocarbons (methane) were also carried out, which are intended to serve as reference tests for checking flame models based on hydrocarbon data. Following from the experimental investigations, modelling parameters such as the Surface Emissive Power (SEP) and the radiant heat fraction for hydrogen and methane will be compared to literature data. T2 - Center for Hydrogen Safety Americas Conference, American Institute of Chemical Engineers CY - Las Vegas, NV, USA DA - 21.05.2024 KW - Thermal radiation KW - Hydrogen KW - Release KW - Jet flame PY - 2024 AN - OPUS4-60195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Recent Developments of Fluidic Ultrasonic Transducers at BAM N2 - Ultrasonic measurement technology has become indispensable in NDT. In order to reduce measurement time and extend the application to other materials, contactless ultrasound is the subject of many different research groups. Department 8 has been researching successfully in this field for years. A novel approach is based on so-called fluidic devices. These devices can be used to perform binary logic operations with the help of natural flow instabilities. Hence the abbreviated name, Fluidic (FLUID+LogIC). Only a pressure reservoir of the used fluid is required as energy supply. This enables the production of very robust actuators that generate ultrasonic signals in an extremely energy efficient way. The presentation includes the research results of the ZIM innovation project OsciCheck. The original idea will be presented and its application on different building materials is validated. Beyond this, the possible application areas are much larger and a detailed outlook is given to discuss the future potential of fluidic ultrasonic actuators. T2 - Abteilungsseminar Abteilung 8 CY - Berlin, Germany DA - 23.09.2021 KW - Uultrasound KW - Non-destructive testing KW - Fluidic devices KW - Hydrogen KW - Ranging KW - Harsh environments PY - 2021 AN - OPUS4-53356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chulvi Iborra, Katherine A1 - Kraus, Werner A1 - Rurack, Knut A1 - Emmerling, Franziska T1 - Pd(II)-LMOF based material for the sensing of molecular hydrogen in gas phase N2 - Current interest in hydrogen gas as an energy source is growing due to its attractive properties such as high chemical energy density and the fact that its combustion produces water as by-product, qualifying this gas as an appealing clean energy source. In particular, the use of molecular hydrogen in automotive applications such as the hydrogen internal combustion engine (HICE) or hydrogen fuel cells is an excellent clean alternative. Despite these promising opportunities, hydrogen gas has a distinct disadvantage as an everyday energy medium, that is, it is highly flammable. Hydrogen processing apparatuses should therefore be constantly monitored so that leaks are immediately detected. The implementation of direct sensing systems for H2(g) is thus a decisive factor for its application and acceptance as a clean energy source. Because the automotive market alone is already a mass market, these sensors do not only have to be reliable, robust and dimensionally small, but operation has to be simple and the device itself cost-effective. In addition, very low detection limits are a must as already escape of small quantities of H2(g) is directly related to public health and safety. Besides electrochemical or semiconductor sensors, optical sensors are especially appealing because the equipment is usually simple and accessible, easily miniaturized and measurements can be performed in situ and in real time. If one cannot rely for instance on metallic palladium as interacting matrix, a major challenge for optochemical hydrogen sensors is to find a suitable material that fulfils all the requirements mentioned above and undergoes a dedicated indication reaction with H2(g). One such alternative can be Metal-Organic Frameworks (MOFs) which constitute a predefined, organized, mesoporous structure built up from metal ions and organic bridging ligands. With a myriad of building blocks being available, MOFs can be equipped with internal H2 reception sites that shall allow for selective and sensitive indication. For instance, if Pd ions are implemented in such a way that they express open metal sites (OMS), these OMS shall possess a strong affinity for hydrogen. If light absorbing and emitting organic ligands are additionally chosen, luminescent MOFs (LMOFs) can result that are perfect candidates for optical sensors, as changes at the analyte reception site can be effectively transduced into a measurable signal. In this contribution, we intended to discuss the development of a new luminescent sensor material for the detection of the highly flammable H2(g). This sensor material is based on an LMOF assembled from Pd(II) and aromatic bridging ligands, the advent of hydrogen at the OMS in the LMOF producing distinct variations in the material’s optical properties. T2 - 24th Congress and General Assembly of the International Union of Crystallography CY - Hyderabad, India DA - 21.08.2017 KW - Optical sensor KW - Hydrogen KW - LMOF PY - 2017 UR - http://www.iucr2017.org/abstract/myaccount/pdf/iucr2017-abstract-0b61b4c101d7bf652ae5b0dffd66e5fd.pdf AN - OPUS4-42362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino T1 - Prestressed Concrete Structures with Concentrated Tendons - Structural Damage due to Hydrogen-Induced Stress Corrosion Cracking N2 - In the course of the deconstruction of the "Bridge of the 20th anniversary of the GDR" at the Altstädter Bahnhof in Brandenburg a. d. Havel, new information on the initiation of hydrogen-induced stress cracks was obtained. BAM was commissioned by the Brandenburg State Road Administration to participate in a corresponding joint project which is financed by the Federal Ministry for Digital and Transport. The added value of the new information gained in this project goes beyond the specific structure. It describes unexpected new damage patterns that can be transferred to other structures with concentrated tendons (tendon block method and Baur-Leonhardt method) and were previously unknown in this form. These should be made known to other developers to enable them to initiate any necessary actions. T2 - Eurocorr 2022 CY - Berlin, Gemany DA - 29.08.2022 KW - Korrosion KW - Corrosion KW - Hydrogen KW - Stress Cracking PY - 2022 AN - OPUS4-55613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Mietz, Jürgen A1 - Burkert, Andreas T1 - Inhibition of hydrogen evolution on galvanized reinforcement in fresh concrete by addition of potassium permangante N2 - Due to the EUdirective53/2003/EEC,which has been in force since 17th January, 2005, restricts the soluble chromate content in cements to amaximum value of 2ppm. This ammount is to low to inhibit the hydrogen evolutuion by the cathodic partial reaction in fresh concrete. T2 - Eurocorr 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Corrosion KW - Galvanized reinforcement KW - Hydrogen PY - 2019 AN - OPUS4-48934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Seifert, Lando A1 - Müller, Thoralf T1 - Stress corrosion test in thiocyanate solution with galvanostatic current N2 - Prüfung von Spannstählen hinsichtlich ihrer Anfälligkeit gegenüber wasserstoffinduzierter Spannungsrisskorrosion in kürzeren Zeiträumen. Gewährleistung der Dauerhaftigkeit mittels neuartiger elektrochemischer Prüfverfahren und galvanostatischer Kontrolle und Wasserstoffbeladung T2 - Meeting ISO TC17 SC16 WG8 CY - Online meeting DA - 11.01.2023 KW - Hydrogen KW - Corrosion PY - 2023 AN - OPUS4-56854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Kaiser, Sebastian A1 - Kannengießer, Thomas T1 - Repair welding of in service hydrogen pipelines N2 - In the course of tomorrow's hydrogen-based energy transition, the construction of the corresponding infrastructure will play a central role. In that context, large diameter long-distance transmission pipelines for hydrogen will be the backbone in the European Union with service pressures from 70 to 90 bar (e.g., depending on national regulations). It is a major goal to rededicate the existing LNG infrastructure despite the necessity of new pipelines. From that point of view repairing of such transmissions pipelines via welding can be necessary. For the LNG infrastructure, it is state of the art that repair welding is conducted at pipelines under service, i.e., the LNG is still flowing as pressurized gas in the steel pipes. The reason is that a shut-down of large diameter pipelines is not so easy or sometimes impossible. In fact, as long no oxygen enters the pipeline, there would be any combustion or (in the worst case) explosion. At the moment, it is entirely open if current repair welding procedures for LNG pipelines can be transferred to pure hydrogen pipelines. In opposite to LNG, hydrogen can be way easier absorbed to the pipeline steels and diffuses through the material. If it accumulates in susceptible regions, i.e., in the welded joint, hydrogen assisted embrittlement could occur. The planned welding procedure requires a so-called preheating and maintenance of the weld joint of up to 300°C for several hours. This temperature is way higher compared to the typical service temperature of max. 40 to 50°C at operational pressures of 100 bar. In accordance to API 941, these low-alloyed pipeline steels are subjected to short-term service loads, which they are not designed for. For that reason, a collaborative project between BAM and DVGW (German Association for Gas and Water professions) was initiated in 2022 to answer the following questions by experiments and numerical simulation of: (1) How many hydrogen is additionally absorbed during the heating of the material to max. 300°C under remaining operational pressures? (2) Is the hydrogen concentration sufficient to reach a critical condition? (3) Which material and weld microstructure is the most susceptible? (4) Is there a significant difference in the repair welding behavior of LNG pipelines that had been already in use for long-term? (5) Which welding parameters and joint dimensions must be ensured for safe repair welding repair of typical pipelines? For that reason, the present study gives an overview on the current practice in repair welding of in-service pipelines, the industrial importance of this topic for the hydrogen-based energy transition and summarizes first results. T2 - Eurocorr 2023 - The European Corrosion Congress CY - Brussels, Belgium DA - 27.08.2023 KW - Hydrogen KW - Repair Welding KW - Pipeline KW - In-service KW - High-pressure PY - 2023 AN - OPUS4-58334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Hydrogen determination in welded metallic materials: Necessity and challenges N2 - In the course of tomorrow's hydrogen-based energy transition, the construction of the corresponding infrastructure will play a central role. The majority of materials used to date are typically welded for component fabrication. In that context, steels are widely applied and can be prone to hydrogen embrittlement. For the evaluation of any hydrogen effect on, for example, the mechanical properties of a welded metallic material, the hydrogen content must be precisely determined. According to ISO 3690, carrier gas hot extraction (CGHE) can be used. In addition to the pure quantification of hydrogen, thermal desorption analysis (TDA) with varied heating rates can be used to determine and evaluate the bonding state at microstructural defects in the material. For both techniques, experimental and measurement influences have to be considered, which have a great effect on the result. For CGHE, for example, ISO 3690 suggests different sample geometries as well as minimum extraction times. The present study summarizes results and experiences of numerous investigations with different sample temperatures and geometries (ISO 3690 type B and cylindrical TDA samples) regarding: the influence of the sample surface (polished/welded), measurement accuracies depending on the sample volume. In particular, a deviating extraction temperature to the set temperature, can significantly falsify the measurement results. Based on the results, methods are shown to quickly reach the desired extraction temperature without having to physically interfere with the measurement equipment. This serves to substantially improve the reliability of hydrogen measurement through increased signal stability and accelerated hydrogen desorption. In general, an independent temperature measurement with dummy samples for the selected heating procedure is advisable to exclude possible unwanted temperature influences already before the measurement. In addition (and way more important), the methods described can be transferred directly to industrial applications. T2 - Eurocorr 2023 - The European Corrosion Congress CY - Brussels, Belgium DA - 27.08.2023 KW - Hydrogen KW - Carrier gas hot extraction KW - Welding KW - ISO 3690 KW - Measurement PY - 2023 AN - OPUS4-58305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Kaiser, Sebatian A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Challenges in repair welding of in-service h2-pipelines N2 - Hydrogen will be one of the most important energy carriers of tomorrow. For the necessary large-scale and long-distance transportation, a reliable pipeline infrastructure is required. It is meanwhile in the most countries accepted to follow a two-way strategy by (I) repurposing the existing natural gas (NG) grid combined with (II) the installation of new pipelines. For example, in Europe a so-called European Hydrogen Backbone (EHB) is planned for 2040. Currently, 28 countries work together to establish a hydrogen pipeline grid of several thousands of kilometers. In that connection, a wide number of materials are used with different thicknesses, strength levels, chemical composition, surface conditions and so on. Worldwide research projects suggest the general compatibility of the currently applied pipeline steels e.g., in Germany the “SysWestH2” project. Nonetheless, the hydrogen gas grid will require regular inspections, repair, and maintenance. In addition, sometimes pipeline tees are required to connect new grids or pipelines the existing infrastructure. From that point of view, existing concepts from NG-grids must be investigated in terms of the transferability to hydrogen service. An overview on occurring challenges for this hydrogen transition, especially for in-service weld repair procedures is given in this presentation. T2 - AMPP 2024 - The Association for Materials Protection and Performance CY - Genoa, Italy DA - 09.06.2024 KW - In-service KW - Pipeline KW - Repair welding KW - High-pressure KW - Hydrogen PY - 2024 AN - OPUS4-60327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - R&D Activities by BAM Related to Transport Package Fire Testing N2 - Packages for the transport of radioactive material shall meet the mechanical and thermal test requirements of the International Atomic Energy Agency (IAEA) regulations for package design approval. Besides mechanical testing, the Federal Institute for Materials Research and Testing (BAM) performs thermal tests in accordance with the IAEA regulations. The thermal test includes a 30-minute 800°C fully engulfing fire. BAM continuously performs various thermal experiments for the investigation of the thermal response of packages with respect to the IAEA fire. The purpose of this paper is to give an overview of the already performed, ongoing and future physical tests and experiments of BAM in the field of thermal investigations. These research and development works shall support our competencies for the authority package design assessment. BAM operates a propane gas fire test facility. To be able to carry out comparative investigations and validity between the propane fire and the in detail prescribed pool fire test in the regulations, BAM carries out various calorimetric tests and investigates the boundary conditions of the fire with the help of fire reference packages. At the same time, we are conducting various fire scenarios with wood-filled impact limiters. Large-scale fire tests of impact limiters are carried out on a full scale as well as on a small scale. Influencing variables are investigated in particular by means of geometric changes and the consideration of artificial damages, in particular holes. In addition to propane fire as a heat source, thermal scenarios are also investigated with hydrogen as heat source and an infrared radiator system to ignite test specimens. For these numerous test arrangements, the transferability to existing and newly developed transport package designs is essential and fruitful within the review of design approvals, especially for Dual Purpose casks with a long-lasting operation time. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Fire Testing KW - Wood KW - Hydrogen KW - Fire Reference Test PY - 2023 AN - OPUS4-57722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Wille, Frank A1 - Wille, Frank T1 - Potential Effects of Battery and Hydrogen Fires regarding Regulatory Requirements N2 - Introduction and Necessity of the Investigation The IAEA regulations for the safe transport of radioactive material (IAEA SSR-6) define the safety requirements for different package types and consider different transport conditions. The accident conditions of transport specify different mechanical and thermal tests based on investigations of real accident scenarios. Considering the rapid development of new boundary conditions of transport such as electric mobility and the use of hydrogen as energy source for trucks and other kind of vehicles, potential effects of battery and hydrogen fires in transport accidents should be investigated. The aim is to evaluate the existing test requirements developed and derived decades ago, whether they are covering the current transport situation. This concept paper will briefly present the reasons for detailed investigations as bases for a coordinated research project under the roof of the IAEA. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 04.06.2024 KW - Fire KW - Battery KW - Hydrogen KW - IAEA Regulations PY - 2024 AN - OPUS4-60338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gradt, Thomas A1 - Theiler, Géraldine T1 - Influence of cryogenic hydrogen environment on the tribological properties of materials N2 - The presentation gives an overview over the LH2-activities during 20 years of tribological research in cryogenic environments at BAM. T2 - 2019 Hydrogenius & I2CNER Tribology Symposium CY - Fukuoka, Japan DA - 30.01.2019 KW - Friction KW - Wear KW - Hydrogen KW - Cryogenic Engineering KW - Hydrogen Embrittlement PY - 2019 AN - OPUS4-47339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Schaupp, Thomas A1 - Pfretzschner, Beate A1 - Kardjilov, N. A1 - Schulz, M. T1 - Hydrogen in steel visualized by neutron imaging N2 - Neutron cameras allow visualizing hydrogen distributions with radiographic or tomographic imaging methods in iron and steel. The necessary contrast between hydrogen and iron stems from the high difference in the total neutron cross section of both elements. This allows e.g. the in situ measurement of hydrogen mass flow inside cm thick steel samples with a temporal resolution of 20 s using neutron radiography as well as the quantitative measurement of hydrogen accumulations at the crack’s inner surfaces in hydrogen embrittled iron samples with neutron tomography. We could detect directly gaseous hydrogen in the crack cavities and we measured the gas pressure. This new quality of the information on a micrometer scale allows new insights for the analysis of hydrogen-induced damage mechanisms. Further, this method is non-destructive and provides local information in situ and in three dimensions with a spatial resolution of 20-30 μm. In this contribution, we show examples that demonstrate the spatial and temporal resolution of the neutron radiography and tomography methods in order to visualize and quantify hydrogen accumulations at cracks. The measurements were performed at the research reactor BER II of the HZB in Berlin and at the FRM II reactor of the neutron source Heinz Maier-Leibnitz in Garching. T2 - 3rd international conference on metals & hydrogen CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Neutron KW - Radiography KW - Tomography KW - Steel PY - 2018 AN - OPUS4-45074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimault de Freitas, Tomás T1 - State of the Art in the Qualification of Metallic Materials for Hydrogen Technologies N2 - The hydrogen economy is one of the main solutions for achieving climate neutrality in Europe. Metallic materials, predominantly steels, are the most common structural materials in the various components along the hydrogen supply chain. Ensuring their sustainable and safe use in hydrogen technologies is a key factor in the ramp-up of the hydrogen economy. This requires extensive materials qualification, however, most of the accepted, and standardised test methods for determining the influence of gaseous hydrogen on metallic materials describe complex and costly procedures that are only available to a very limited extent worldwide (e.g., autoclave technique). The hollow specimen technique is presented as an alternative method that can overcome the limitations of current techniques and complement them. To standardise the technique, a process has been initiated by ISO in 2021. Knowledge gaps for tests with the technique in hydrogen have been identified by DIN. The H2HohlZug project, which falls under the umbrella of TransHyDE, aims to address the identified knowledge gaps and provide a foundation for a comprehensive standardisation of the hollow specimen technique. T2 - E-World Energy & Water CY - Essen, Germany DA - 20.02.2024 KW - Hydrogen KW - Hydrogen Embrittlement KW - Hollow Specimen Technique KW - High-Pressure Gaseous Hydrogen KW - Standardisation KW - H2HohlZug KW - TransHyDE PY - 2024 AN - OPUS4-59564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimault de Freitas, Tomás T1 - Utilization of the Tubular Specimen Technique for the Qualification of Metallic Materials for Hydrogen Technologies N2 - As the world shifts to a decarbonized economy, the demand for hydrogen-based technologies is rapidly increasing. In order to make optimal use of hydrogen as an energy carrier, the infrastructure for hydrogen storage and transport in particular, must meet high technical safety standards. The indispensable basis for such safety assessments are the material properties, which must be evaluated under operating conditions that are as real as possible. The conventional method for the assessment of the material properties in gaseous hydrogen is conducted by testing materials in high-pressure hydrogen gas in a pressure vessel (autoclave). It is an established method that allows to perform common standardized tests such as tensile, fatigue and crack growth tests under varying hydrogen conditions. However, this method is complex and entails high costs due to extensive safety regulations. The hollow specimen technique is a more efficient test method, which can be used to assess the mechanical properties of materials under high-pressure hydrogen gas. The procedure is conducted by enclosing high-pressure gas into a hole along the axis of the tensile test specimen. Recently, this method has been successfully performed at pressures up to 1000 bar and over a wide range of temperatures. Due to the low hydrogen volume needed, this method requires minimal safety regulation; therefore, the costs are reduced when compared to the conventional autoclave technique. This method is now in a standardization process, which has been initiated by Japan as a new working package in ISO (TC 164/SC 1/WG 9). The following contribution presents preliminary results obtained testing common grades of metastable austenitic stainless steel. For this purpose, the mechanical properties and fracture surface of solid and tubular specimens were assessed and compared using slow strain rate tensile (SSRT) test as part of the preliminary work at the Fraunhofer IWM. In a similar way, pipeline steels evaluated under hydrogen atmospheres using the geometry adapted by BAM will be presented. Within the framework of the TransHyDE flagship project, more results with the goal of supporting the standardization of the hollow specimen technique are expected to be obtained. T2 - ZwickRoell Forum for High-Temperature Testing CY - Fürstenfeld, Austria DA - 03.05.2023 KW - Hydrogen KW - H2Hohlzug KW - TransHyDE KW - Tubular specimen technique KW - Innovation PY - 2023 AN - OPUS4-57417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günzel, Stephan A1 - Mair, Georg T1 - Safety assessment of hydrogen gas storage systems N2 - In this lecture, the safety assessment of hydrogen gas storage systems is presented using the example of composite pressure vessels. The main element is a probabilistic approval approach based on five steps. Firstly, the testing and evaluation of properties at the beginning of life are shown. Secondly, methods for artificial aging and the effect on the residual strength are presented. Thirdly, testing against dedicated accidents is introduced. Fourthly, effects on the surveillance of production quality are discussed. Finally, degradation and the end of life are estimated. Background information and examples are given for each step. The assessment presented is a method applicable for many safety-related systems. T2 - Joint European Summer School 2021 on Fuel Cell, Electrolyser, and Battery Technologies CY - Online meeting DA - 12.09.2021 KW - Safety KW - Hydrogen KW - Wasserstoff KW - Bewertung KW - Assessment PY - 2021 AN - OPUS4-59905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günzel, Stephan A1 - Mair, Georg T1 - Safety assessment of hydrogen gas storage systems N2 - In this lecture, the safety assessment of hydrogen gas storage systems is presented using the example of composite pressure vessels. The main element is a probabilistic approval approach based on five steps. Firstly, the testing and evaluation of properties at the beginning of life are shown. Secondly, methods for artificial aging and the effect on the residual strength are presented. Thirdly, testing against dedicated accidents is introduced. Fourthly, effects on the surveillance of production quality are discussed. Finally, degradation and the end of life are estimated. Background information and examples are given for each step. The assessment presented is a method applicable for many safety-related systems. T2 - Joint European Summer School 2023, Hydrogen Safety CY - Online meeting DA - 17.09.2023 KW - Safety KW - Hydrogen KW - Wasserstoff KW - Bewertung KW - Assessment PY - 2023 AN - OPUS4-59903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -