TY - JOUR A1 - Neubert, S. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL JF - Mechanical Testing N2 - In order to generate a material data base for computational welding mechanics, temperature and strain-rate dependent stress-strain experiments were performed by using a Gleeble®3500 testing system. The object of the investigation was HSLA transformable steel S960QL and related solid phases as bainite, martensite and austenite. For the production of these solid phases, the base material was heat treated according to an average weld temperature cycle which was extracted within the heat affected zone of a thermal numerical weld simulation of a GMA weld. The hot tensile tests were carried out via cost-saving flat specimen geometries. Two experimental series with different strain-rates were conducted, where the longitudinal strain-rate was controlled by specification of the transversal strain-rate applying Poisson’s-ratio. Subsequently, the resulting stress-strain curves were approximated in accordance with the Ramberg-Osgood-materials law. Consequently, it is shown that the temperature and strain-rate dependent stress-strain behavior of metals can be successfully characterized by means of a Gleeble®-system. However, this requires a control of the longitudinal strain-rate by specification of the transversal strain-rate. The related experimental procedure and the method of evaluation are explained in detail. With regard to all tested solid phases, a significant strain-rate dependency can only be observed upwards from temperatures of 400 °C. Based on experimental results, Ramberg-Osgood-parameters will be presented to describe the stress-strain behavior of steel S960QL and related solid phases for temperatures between 25 °C and 1200 °C. Furthermore, the use of costsaving flat specimen-geometry appears reasonable. N2 - Für die Generierung einer Materialdatenbank zur Schweißstruktursimulation wurden temperatur- und dehnratenabhängige Spannungs-Dehnungsexperimente unter Einsatz einer Gleeble® 3500-Anlage durchgeführt. Als Untersuchungsgegenstand diente der hochfeste niedriglegierte Feinkornbaustahl S960QL und seine zugehörigen Festphasen Bainit, Martensit und Austenit. Zur Herstellung dieser Festphasen wurde der Grundwerkstoff Wärmebehandlungen ausgesetzt, welche die charakteristischen Merkmale eines durchschnittlichen Schweißzeittemperaturzyklus aufweisen. Dieser Temperaturzyklus wurde aus der Wärmeeinflusszone eines numerisch nachgebildeten Temperaturfeldes einer MAG-Schweißverbindung extrahiert. Die Zugversuche wurden an einer kostengünstig herzustellenden Flachprobengeometrie durchgeführt, wobei zwei Experimentalreihen mit jeweils unterschiedlichen Dehnraten realisiert wurden. Die resultierenden Spannungs-Dehnungskurven wurden durch die Ramberg-Osgood-Beziehung approximiert. Es konnte gezeigt werden, dass das temperatur- und dehnratenabhängige Spannungs-Dehnungsverhalten von Metallen durch die Anwendung eines Gleeble®-Systems erfolgreich charakterisiert werden kann. Die Einstellung der Längsdehnrate muss dabei durch die Kontrolle der Querdehnrate unter Berücksichtigung des Poisson-Verhältnisses erfolgen. Die experimentellen Prozeduren und die zugehörigen Auswertemethodiken wurden detailliert erläutert. Für alle getesteten Festphasen wurde ein signifikanter Dehnrateneinfluss erst für Temperaturen ab 400 °C aufwärts beobachtet. Die anhand der Messergebnisse abgeleiteten Ramberg-Osgood-Parameter zur Beschreibung des Verfestigungsverhaltens für den Temperaturbereich zwischen 25 °C und 1200 °C werden vollständig präsentiert. KW - Stress-strain behavior KW - Gleeble testing KW - HSLA KW - Strain-rate KW - Numerical welding simulation KW - Transformable steels PY - 2018 DO - https://doi.org/10.3139/120.111208 SN - 0025-5300 VL - 60 IS - 7-8 SP - 733 EP - 748 PB - Carl Hanser CY - München AN - OPUS4-45791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Material properties for welding simulation - measurement, analysis, and exemplary data JF - Welding journal N2 - Welding is a key technology in the area of industrial production due to its flexibility and efficiency. However, new materials and welding techniques necessitate permanent research activities in order to keep up with the demands. A detailed knowledge about the process itself and the heat effects of welding, e.g., temperatures, distortions, and stresses, is the basis for a target-oriented optimization instead of a trial-and-error approach. Numerical welding simulation is a powerful tool to meet these demands. Complementary to an experimental investigation, it enables the analysis of the specimen during the welding process, commonly known as computational welding mechanics (CWM). Whereas simulation is nowadays a common tool in different development processes, the modeling of welding still remains difficult because of the multiple physical effects taking place. One of the most important problems for the user is the lack of knowledge about the material properties as input data for the simulation. Furthermore, any scattering of the data causes uncertainties that can have major effects on the calculations. The objective of this paper is to give an overview about the experimental determination and analysis of the material properties needed as input data for a welding simulation. The measurement techniques and the occurring deviations of the results are discussed. Additionally, the collected data for three representative alloys (dual-phase steel, austenitic steel, precipitation-hardenable aluminum alloy) are analyzed. Finally, the temperature-dependent thermophysical and thermomechanical material properties for these three alloys are given in a ready-to-use format for a numerical welding simulation. KW - Thermophysical material properties KW - Thermomechanical material properties KW - Experimental determination KW - Numerical welding simulation PY - 2011 SN - 0043-2296 SN - 0096-7629 VL - 90 SP - 220-s EP - 227-s PB - American Welding Society CY - New York, NY AN - OPUS4-25028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Distortion optimisation of beam-welded industrial parts by means of numerical welding simulation JF - international journal of microstructure and materials properties KW - Distortion KW - Optimisation KW - Weld plan modification KW - Industrial parts KW - Automotive application KW - Numerical welding simulation KW - Laser beam welding KW - Electron beam welding KW - Finite element analysis KW - FEA PY - 2010 SN - 1741-8410 SN - 1741-8429 VL - 5 IS - 4/5 SP - 412 EP - 422 PB - Inderscience Enterprises Ltd CY - Genève, Switzerland AN - OPUS4-22705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thater, Raphael A1 - Perret, William A1 - Schwenk, Christopher A1 - Alber, U. A1 - Rethmeier, Michael T1 - Industrial application of welding temperature field and distortion visualization using FEA JF - Transactions of JWRI KW - Numerical welding simulation KW - Temperature field KW - Distortion KW - Industrial application KW - Automotive assembly PY - 2010 SN - 0387-4508 VL - 39 IS - 2 SP - 232 EP - 234 CY - Osaka, Japan AN - OPUS4-24354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -