TY - JOUR A1 - Abou-Ras, D. A1 - Gibmeier, J. A1 - Nolze, Gert A1 - Gholinia, A. A1 - Konijnenberg, P. T1 - On the capability of revealing the pseudosymmetry of the chalcopyrite-type crystal structure JF - Crystal Research and Technology N2 - The tetragonal crystal- structure type of chalcopyrites (chemical formula AIBIIICVI2) is a superstructure of sphalerite type. The c/a ratio differs generally from the ideal value 2, i.e., the crystal structure is pseudocubically distorted. For CuInSe2 and CuGaSe2 thin films, simulations demonstrate that it is theoretically possible to reveal the tetragonality in electron backscatter-diffraction (EBSD) patterns for CuGaSe2, whereas it may not be possible for CuInSe2. EBSD experiments on CuGaSe2 thin films using the ”Advanced Fit” band-detection method show that it is possible to extract accurate misorientation-angle distributions from the CuGaSe2 thin film. Pole figures revealing the texture of the CuGaSe2 thin film are shown, which agree well with X-ray texture measurements from the same layer. KW - Pseudosymmetry KW - Chalcopyrite KW - Electron backscatter diffraction KW - Pattern simulation KW - Pattern matching KW - Sphalerite PY - 2008 DO - https://doi.org/10.1002/crat.200711082 VL - 43 IS - 3 SP - 234 EP - 239 PB - WILEY-VCH AN - OPUS4-38003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Nolze, Gert T1 - Investigation of the competitive grain growth during solidification of single crystals of nickel-based superalloys JF - Crystallography Reports N2 - The competitive growth of columnar grains in a single-grain selector, which is used for directional solidification of single-crystal blades from nickel-based superalloys, has been investigated by electron backscattered diffraction and local X-ray diffraction analysis. It has been found that the competitive grain growth in a starter block is determined by the crystallographic factor: rapidly growing grains with the axial orientation close to the [001] direction dominate in this part of the casting. For the competitive grain growth in a helicoidal separator, the geometric factor (the position of a grain at the input of the separator) is also important. The results obtained suggest that an appropriate geometry of the single-grain selector was chosen. In addition, the distribution of the orientations of columnar grains obtained by electron backscattered diffraction, can be used for approximate estimation of the yield of suitable (i.e., with the deviation of the axial orientation from the [001] direction within a specified tolerance) single-crystal blades. KW - Electron backscatter diffraction KW - Single crystal KW - Growth competition KW - Nickel alloy PY - 2006 DO - https://doi.org/10.1134/S1063774506040298 SN - 1063-7745 SN - 1562-689X VL - 51 IS - 4 SP - 710 EP - 714 AN - OPUS4-38028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Link, T. A1 - Nolze, Gert A1 - Loshchinin, Yu. V. A1 - Gerstein, G. T1 - Thermal stability of the structure of a heat-resistant cobalt alloy hardened with intermetallic γ'-phase precipitates JF - Russian Metallurgy N2 - The thermal stability of the microstructure of a heat-resistant cobalt alloy, which consists of a γ solid solution strengthened with γ'-phase precipitates, has been studied. The temperature behavior of the dissolution of the hardening γ' phase and the kinetics of its coarsening at 700 and 800°C have been determined. It is found that, during prolonged annealing at 800°C, the γ' → β phase transformation occurs. KW - Superalloy KW - Microstructure KW - Hardening KW - Electron backscatter diffraction KW - TEM PY - 2016 DO - https://doi.org/10.1134/S0036029516040078 SN - 0036-0295 VL - 2016 IS - 4 SP - 286 EP - 291 PB - Pleiades Publishing AN - OPUS4-37768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glowacka, A. A1 - Nolze, Gert A1 - Swiatnicki, W. A. T1 - EBSD study of corrosion fatigue of austenitic-ferritic steel JF - Archives of Metallurgy and Materials N2 - Fatigue crack propagation investigations have been performed in austenitic-ferritic duplex stainless steel H22N5M3 in air and during hydrogen charging, using various frequencies of loading. Strong differences of crack propagation velocity depending on the test conditions were noticed. Lower frequency with applied hydrogen charging led to the huge increase of crack propagation velocity compared to the tests performed in air. To understand such a behaviour in each case and characterize crack mode, the samples were observed using electron back-scattered diffraction (EBSD). It was shown that in air, the fatigue crack propagation involved plastic deformation and the resulting cracks had ductile character. The presence of hydrogen led to more brittle mode of cracking. This effect was also connected with frequency of loading: lower frequency, which assured longer time for hydrogen-crack tip interaction, resulted in the highest crack propagation velocity and the brittle cracking mode with lower amount of plastic deformation. The performed observations indicated that the path of the crack went mostly transgranularly through both austenite and ferrite phases. Phase and grain boundaries were not the preferred paths for crack propagation. KW - Hydrogen KW - Embrittlement KW - Electron backscatter diffraction KW - Steel PY - 2006 SN - 1733-3490 SN - 0004-0770 SN - 0860-7052 VL - 51 IS - 1 SP - 7 EP - 10 AN - OPUS4-38029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glowacka, A. A1 - Wozniak, M. J. A1 - Nolze, Gert A1 - Swiatnicki, W. A. T1 - Hydrogen induced phase transformations in austenitic-ferritic steel JF - Solid State Phenomena N2 - The hydrogen influence on the microstructure of the austenitic-ferritic Cr22-Ni5-Mo3 stainless steel was investigated. Cathodic hydrogen charging was performed electrochemically from aqueous solution of 0.1M H2SO4 with hydrogen entry promoter addition. The aim of this study was to reveal microstructural changes appearing during the hydrogen charging and particularly to clarify the occurrence of phase transformations induced by hydrogen. The specific changes in both phases of steel were observed. In the ferritic phase, strong increase of dislocation density was noticed. Longer time of hydrogen charging leaded also to the strips and twin plates formation in ferrite phase. In the austenitic phase, the generation of stacking faults, followed by the formation of α' martensite was remarked. KW - Steel KW - Hydrogen KW - Embrittlement KW - Electron backscatter diffraction KW - SEM PY - 2006 DO - https://doi.org/10.4028/www.scientific.net/SSP.112.133 SN - 1662-9779 VL - 112 SP - 133 EP - 140 AN - OPUS4-38031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heide, K. A1 - Nolze, Gert A1 - Völksch, G. A1 - Heide, G. T1 - Boracite Mg3[B7O13Cl] from the Zechstein salt deposits JF - Zeitschrift für Kristallographie N2 - Among the borates in the Middle European Zechstein Salt Succession boracite Mg3[B7O13Cl] is the most common mineral in quantity and local distribution. An exceptional enrichment is observed in Stassfurt Serie Z2) in the Stassfurth seam K2H. Boracite is to be found in two varieties: individual crystals in cubic, tetrahedral or dodecahedral habit on the one hand and fibrous crystals so-called “stassfurtite” on the other hand. The formation conditions such widely spread borates in the salt succession are ambiguous in two respects. First of all the synthetic formation of boracites is to be made by hydrothermal or melt conditions. Both processes can be suspended for the salt succession. Furthermore the cubic modification is stable above 265°C for the Mg-boracite. The cubic, tetrahedral or dodecahedral habit could be used as a geothermometer, but such conditions can be exclude by the paragenetic minerals, esp. carnallite (MgKCl3 x 6H2O). The chemical composition of orthorhombic, pseudo-cubic boracite depends on the location. Pure Mg-boracite in hexahedral habit and in fibrous habit, so-called “stassfurtite”, occurs in the North Harz region, whereas the Fe-, Mn-, Mg-boracite appears in the South Harz region. Until now the source of boron, the time of formation of crystals, but also the reasons for the differences in habit of the single hexahedral crystals are still unclear. The formation during a diagenetic/metamorphic process is evident. However, the preferred formation in Stassfurt seam could be an indication for the boron enrichment in an early diagenetic process. Furthermore permit the determination of the thermal stability and the volatile content of crystals conclusions to the chemical composition of the fluid. The observed variation suggests that the condition of crystal growth as well as the chemical composition of fluid repeatedly changed over the time. Randomly occuring xenomorpheous anhydrite and magnesite inclusions within single boracite crystals have been interpreted as an indication to factors of chemical milieu during the formation of crystals. The reversible phase transition temperature of the boracite is a linearly function of the iron and manganese content and varies from 265°C for Mg-boracite to 330°C for Fe(Mn)-boracite. The thermal decomposition of boracite is determined by two processes. The decomposition started with a boron-chlorine release (BOCl?), having a maximum rate at 1050°C. Additionally to this release one observes a simultaneous emission of H2O, HCl, HF, CO2 , N2 , SO2 , H2 , and hydro carbons. The results give evidence for the aged approach of a secondary formation of boracite within the complete Stassfurt seam, possibly in connection with the formation of salt diapirs in the Jura and Cretaceous period. The wider environmental distribution of borates is an indication of chemical transport processes within the salt succession. This should be a more important issue in the discussion about the utilisation of salt diapirs for the storage of nuclear waste. KW - Borate KW - Boracite KW - Thermal behaviour KW - Electron backscatter diffraction KW - Energy-dispersive x-ray spectroscopy PY - 2013 DO - https://doi.org/10.1524/zkri.2013.1633 VL - 228 SP - 467 EP - 475 PB - Oldenbourg Wissenschaftsverlag, München AN - OPUS4-37982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, L. A1 - Han, M. A1 - Nolze, Gert T1 - The determination of lattice parameters using single EBSD patterns JF - Microscopy and Microanalysis N2 - A typical electron backscatter diffraction (EBSD) pattern usually contains more than a hundred of Kikuchi poles that formed by intersecting dozens of visible Kikuchi bands. The poles correspond to zone axes in real space or lattice planes in reciprocal space. The band widths are inversely proportional to the interplanar spacings of diffracting lattice planes, and the angle formed by the beam source and two band center-lines approximately corresponds to angle between two lattice planes. However, EBSD patterns always suffer from gnomic distortions. In addition, the band width measurement has a relative error of 5-20% due to the complex profile. Thus, an EBSD pattern always provides abundant crystallographic information but disappointingly low accuracy. T2 - Microscopy & MicroAnalysis 2016 CY - Columbus, Ohio, USA DA - 24.07.2016 KW - Electron backscatter diffraction KW - Lattice parameter determination PY - 2016 UR - https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S1431927616004025 SN - 1431-9276 SN - 1435-8115 VL - 22 SP - Suppl. 3, 634 EP - 635 AN - OPUS4-37742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin, S. A1 - Walnsch, A. A1 - Nolze, Gert A1 - Leineweber, A. A1 - Léaux, F. A1 - Scheuerlein, C. T1 - The crystal structure of (Nb0.75Cu0.25)Sn-2 in the Cu-Nb-Sn system JF - Intermetallics N2 - During the processing of superconducting Nb3Sn wire, several intermediate intermetallic phases including a previously encountered Cu-Nb-Sn phase show up. The yet unknown crystal structure of this phase is now identified by a combination of different experimental techniques and database search to be of the hexagonal NiMg2 type with a proposed composition of about (Nb0.75Cu0.25)Sn2. The structure determination started from an evaluation of the lattice parameters from EBSD Kikuchi patterns from quenched material suggesting hexagonal or orthorhombic symmetry. A database search then led to the hexagonal NiMg2 type structure, the presence of which was confirmed by a Rietveld analysis on the basis of high energy synchrotron X-ray powder diffraction data. Assuming a partial substitution of Nb in orthorhombic NbSn2 by Cu, the change of the valence electron concentration provokes a structural transformation from the CuMg2 type for NbSn2 to the NiMg2 type for (Nb0.75Cu0.25)Sn2. In the previous literature the (Nb0.75Cu0.25)Sn2 phase described here has occasionally been referred to as Nausite. KW - Electron backscatter diffraction KW - X-ray diffraction KW - Intermetallic compound KW - Structure solution KW - Superconductor PY - 2017 DO - https://doi.org/10.1016/j.intermet.2016.09.008 SN - 0966-9795 SN - 1879-0216 VL - 80 SP - 16 EP - 21 PB - Elsevier Ltd. AN - OPUS4-37874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Irrational orientation relationship derived from rational orientation relationships using EBSD data JF - Crystal Research and Technology N2 - The determination of the orientation relationship (OR) between α-Fe matrix (bcc) and γ-Fe precipitates (fcc) is discussed using orientation data collected by electron backscatter diffraction (EBSD). The comparatively low accuracy of EBSD is compensated by the high number of measurements what allows a general statement regarding to the mean OR existing in a sample. The representation and discussion is realized on a part of the Bain zone in a {001} pole figure. A discussion of some selected rational OR which are commonly used for the phase boundary characterization between α and γ shows that the pole figures describing a transformation from γ → α are different to those for α → γ. A technique is proposed based on at least three misorientation angles between the experimental OR to the rational OR's as reference. For the misorientation angle distribution a refinement is applied to extract the mean values. They are used to detect the mean OR, what is also possible for only a few or even a single precipitate if the number of measurements describing the phase boundary is sufficiently high. KW - Orientation mapping KW - Orientation relationship KW - Electron backscatter diffraction KW - Kurdjumov-Sachs KW - Nishiyama-Wassermann KW - Misorientation PY - 2008 DO - https://doi.org/10.1002/crat.200711058 VL - 43 IS - 1 SP - 61 EP - 73 PB - WILEY-VCH AN - OPUS4-38009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Interphase boundary characterization in duplex steel and iron meteorites using EBSD technique JF - Archives of Metallurgy and Materials N2 - The properties of materials are mainly described by the orientation distribution of the crystalline phases in a material. Beside the so considered anisotropy also the grain as well as phase boundaries are of extreme importance for a whole string of properties, e.g. the strength of a material. On the example of the interface between fcc and bcc iron the discovered and derived models are discussed. Although the common models are based on the crystal lattice description, the atomic configuration on the interface is analysed. Since experimentally a wide spread of orientations data appears the consideration of the frequency distribution is proposed to find at least the main orientation relationship between fcc and bcc. High-indexed pole figures as well as the Euler subspace are introduced in order to increase the accuracy and to compare different measurements. For the sake of simplicity EBSD measurements on iron meteorites are used since they commonly consist of large fcc single crystals which transformed to a low and very specific number of bcc grains. In special cases the described procedure could also be used for steels. KW - Orientation relationships KW - Electron backscatter diffraction KW - Steel KW - Iron meteorites KW - Kurdjumov-Sachs KW - Nishiyama-Wassermann PY - 2006 SN - 1733-3490 SN - 0004-0770 SN - 0860-7052 VL - 51 IS - 1 SP - 15 EP - 22 AN - OPUS4-38030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Geist, V. T1 - A new method for the investigation of orientation relationships in meteoritic plessite JF - Crystal Research and Technology N2 - The orientation relationship (OR) between the bcc and fcc phase in the plessite microstructure of the iron meteorites Watson, Agpalilik and Gibeon has been analysed in a scanning electron microscope using electron back-scattered diffraction (EBSD). A very strong OR exists, independently on the analysed plessite type and the observed spreading of single orientation data. The agreement between the experimental orientation distribution and existing models varies for each meteorite. The black plessite in the Agpalilik corresponds to the Nishiyama-Wassermann model whereas the Duplex plessite of the Gibeon meteorite shows an OR close to the Kurdjumov-Sachs model. The Watson meteorite is strongly deformed so that a general OR is difficult to determine due to the blurred experimental orientation distribution. KW - Meteorite KW - Orientation relationship KW - Steel KW - Electron backscatter diffraction KW - Kurdjumov-Sachs KW - Nishiyama-Wassermann PY - 2004 DO - https://doi.org/10.1002/crat.200310193 SN - 0023-4753 SN - 0232-1300 VL - 39 IS - 4 SP - 343 EP - 352 AN - OPUS4-38032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Grosse, C. A1 - Winkelmann, Aimo T1 - Kikuchi pattern analysis of noncentrosymmetric crystals JF - Journal of applied crystallography N2 - Different models of Kikuchi pattern formation are compared with respect to their applicability to noncentrosymmetric crystals, and the breakdown of Friedel's rule in experimental electron backscatter diffraction (EBSD) patterns is discussed. Different AIIIBV semiconductor materials are used to evaluate the resulting asymmetry of Kikuchi band profiles for polar lattice planes. By comparison with the characteristic etch pit morphology on a single-crystal surface, the polar character of the measured lattice planes can be assigned absolutely. The presented approach enables point-group-resolved orientation mapping, which goes beyond the commonly applied Laue group analysis in EBSD. KW - EBSD KW - Pattern simulation KW - Point groups KW - Laue groups KW - Electron backscatter diffraction KW - Kikuchi patterns KW - Enantiomorphy; polarity KW - Friedel's rule PY - 2015 DO - https://doi.org/10.1107/S1600576715014016 SN - 0021-8898 SN - 1600-5767 VL - 48 SP - 1405 EP - 1419 PB - Blackwell CY - Oxford AN - OPUS4-34477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Hielscher, R. ED - Hielscher, Ralf T1 - Orientations - perfectly colored JF - Journal of Applied Crystallography N2 - The inverse pole figure (IPF) coloring for a suitable evaluation of crystal orientation data is discussed. The major goal is a high correlation between encoding color and crystal orientation. Revised color distributions of the fundamental sectors are introduced which have the advantages of (1) being applicable for all point groups, (2) not causing color discontinuities within grains, (3) featuring carefully balanced regions for red, cyan, blue, magenta, green and yellow, and (4) an enlarged gray center in opposition to a tiny white center. A new set of IPF color keys is proposed which is the result of a thorough analysis of the colorization problem. The discussion considers several topics: (a) the majority of presently applied IPF color keys generate color discontinuities for specifically oriented grains; (b) if a unique correlation between crystal direction and color is requested, discontinuity-preventing keys are possible for all point groups, except for 4, 3 and 1; (c) for a specific symmetry group several IPF color keys are available, visualizing different features of a microstructure; and (d) for higher symmetries a simultaneous IPF mapping of two or three standard reference directions is insufficient for an unequivocal orientation assignment. All color keys are available in MTEX, a freely available MATLAB toolbox. KW - Electron backscatter diffraction KW - Color coding KW - Symmetry groups KW - Orientation description PY - 2016 DO - https://doi.org/10.1107/S1600576716012942 SN - 0021-8898 SN - 1600-5767 VL - 49 IS - 5 SP - 1786 EP - 1802 AN - OPUS4-37741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Hielscher, R. A1 - Winkelmann, Aimo T1 - Electron backscatter diffraction beyond the mainstream JF - Crystal Research and Technology N2 - We present special applications of electron backscatter diffraction (EBSD) which aim to overcome some of the limitations of this technique as it is currently applied in the scanning electron microscope. We stress that the raw EBSD signal carries additional information which is useful beyond the conventional orientation determination. The background signal underlying the backscattered Kikuchi diffraction (BKD) patterns reflects the chemical composition and surface topography but also contains channeling-in information which is used for qualitative real-time orientation imaging using various backscattered electron signals. A significantly improved orientation precision can be achieved when dynamically simulated pattern are matched to the experimental BKD patterns. The breaking of Friedel’s rule makes it possible to obtain orientation mappings with respect to the point-group symmetries. Finally, we discuss the determination of lattice parameters from individual BKD patterns. Subgrain structure in a single quartz grain. The increased noise level in the left map reflects the lower precision of a standard orientation determination using band detection by the Hough transform. The right map results from the same experimental raw data after orientation refinement using a pattern matching approach. The colors correspond an adapted inverse pole figure color key with a maximum angular deviation of about 2° from the mean orientation. KW - Electron backscatter diffraction PY - 2017 DO - https://doi.org/10.1002/crat.201600252 SN - Online 1521-4079 VL - 52 IS - 1 SP - Special Issue - Article Number: UNSP 1600252, 1 EP - 24 PB - WILEY-VCH AN - OPUS4-37935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Payton, E. T1 - Messengers from Space: A Scanning Electron Microscopy Investigation JF - Imaging & Microscopy N2 - The macro- and microstructure of iron meteorites provide valuable insights into both the inner structure of our planet and the history of our solar system. High speed collision events in the asteroid belt send the meteorites careening toward Earth. The collisions produce unique deformation microstructures. With cooling rates on the scale of a few degrees per million years, iron meteorites can consist of crystal sizes on the order of meters prior to the collision events. These extremely slow cooling rates result in phase transformations occurring at conditions near thermodynamic equilibrium. Preserving meteorite fragments is important for future studies of phase transformations, material behavior at high strain rates, and the origin of the universe. KW - Meteorite KW - Phase identification KW - Hibbingite KW - Orientation relationship KW - Electron backscatter diffraction KW - Energy dispersive x-ray spectroscopy KW - EDX PY - 2013 IS - 3 SP - 2 EP - 4 PB - GIT Verlag AN - OPUS4-37981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Payton, E. A1 - Winkelmann, Aimo T1 - Advanced EBSD Pattern Interpretation through Iterative Post-Processing JF - Microscopy and Microanalysis N2 - Since the BSE signal depends on many factors, like the chemistry of the phase and the acceleration voltage, the size and position of the detector array is (slightly) different from phase to phase so that an (iterative) post-processing of the stored patterns is highly recommended. The derived BSE signal can be used for phase assignment in high resolution and high speed maps when EBSD fails and/or EDS (energy dispersive spectroscopy) needs too much time for a suitable and parallel signal acquisition. KW - Electron backscatter diffraction KW - Phase identification KW - Microstructure KW - SEM PY - 2013 DO - https://doi.org/10.1017/S1431927613005631 VL - 19 IS - Suppl. 2 SP - 728 EP - 729 AN - OPUS4-37986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Cios, G. A1 - Winkelmann, A. T1 - Manual measurement of angles in backscattered and transmission Kikuchi diffraction patterns JF - Journal of Applied Crystallography N2 - A historical tool for crystallographic analysis is provided by the Hilton net, which can be used for manually surveying the crystal lattice as it is manifested by the Kikuchi bands in a gnomonic projection. For a quantitative analysis using the Hilton net, the projection centre as the relative position of the signal source with respect to the detector plane needs to be known. Interplanar angles are accessible with a precision and accuracy which is estimated to be ≤0.3o. Angles between any directions, e.g. zone axes, are directly readable. Finally, for the rare case of an unknown projection-centre position, its determination is demonstrated by adapting an old approach developed for photogrammetric applications. It requires the indexing of four zone axes [uvw]i in a backscattered Kikuchi diffraction pattern of a known phase collected under comparable geometric conditions. KW - Electron backscatter diffraction KW - EBSD KW - Angle measurement KW - Gnomonic projections KW - Kikuchi patterns PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507625 DO - https://doi.org/10.1107/S1600576720000692 VL - 53 SP - 435 EP - 443 AN - OPUS4-50762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Rychlowski, L. A1 - Cios, G. A1 - Winkelmann, A. T1 - Crystallographic analysis of the lattice metric (CALM) from single electron backscatter diffraction or transmission Kikuchi diffraction patterns JF - Journal of Applied Crystallography N2 - A new software is presented for the determination of crystal lattice parameters from the positions and widths of Kikuchi bands in a diffraction pattern. Starting with a single wide-angle Kikuchi pattern of arbitrary resolution and unknown phase, the traces of all visibly diffracting lattice planes are manually derived from four initial Kikuchi band traces via an intuitive graphical user interface. A single Kikuchi bandwidth is then used as reference to scale all reciprocal lattice point distances. Kikuchi band detection, via a filtered Funk transformation, and simultaneous display of the band intensity profile helps users to select band positions and widths. Bandwidths are calculated using the first derivative of the band profiles as excess-deficiency effects have minimal influence. From the reciprocal lattice, the metrics of possible Bravais lattice types are derived for all crystal systems. The measured lattice parameters achieve a precision of <1%, even for good quality Kikuchi diffraction patterns of 400 x 300 pixels. This band-edge detection approach has been validated on several hundred experimental diffraction patterns from phases of different symmetries and random orientations. It produces a systematic lattice parameter offset of up to ±4%, which appears to scale with the mean atomic number or the backscatter coefficient. KW - Electron backscatter diffraction KW - Kikuchi patterns KW - Lattice parameters KW - Radon transform PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527076 DO - https://doi.org/10.1107/S1600576721004210 SN - 1600-5767 VL - 54 IS - Pt 3 SP - 1012 EP - 1022 AN - OPUS4-52707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - Progress in dynamic EBSD pattern simulation JF - Microscopy and Microanalysis N2 - EBSD is nowadays a common technique for the characterization of crystalline microstructures in scanning electron microscopy. The diffraction patterns are often interpreted by superimposing individual Kikuchi bands which are geometrically described by band edges derived from Braggs law. For the typically very simple crystal structures of technically applied materials, such a simplification of the Kikuchi pattern interpretation works sufficiently well, especially for orientation determinations as a main application of EBSD. The more complex crystal structures, however, are a challenge for EBSD indexing routines which in such cases often fail unpredictably. The use of only the intensities of single reflectors for a description of the Kikuchi band intensity and as a cut-off criterion for a pre-selection of the strongest bands are not satisfactory. Often the result will match too many phases, or there are certain deviations in the intensity prediction which must be adapted manually. This is already problematic if one is absolutely sure that the patterns are originating from the expected phase and it becomes a very questionable procedure for an unknown phase. KW - Electron backscatter diffraction KW - Dynamical simulation KW - Geometrical model KW - Kinematic approach KW - Intensity PY - 2010 DO - https://doi.org/10.1017/S1431927610063324 VL - 16 IS - Suppl. 2 SP - 62 EP - 63 PB - Microscopy Society of America AN - OPUS4-38000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Payton, E. A1 - Nolze, Gert T1 - The Backscatter Electron Signal as an Additional Tool for Phase Segmentation in Electron Backscatter Diffraction JF - Microscopy and Microanalysis N2 - The advent of simultaneous energy dispersive X-ray spectroscopy (EDS) data collection has vastly improved the phase separation capabilities for electron backscatter diffraction (EBSD) mapping. A major problem remains, however, in distinguishing between multiple cubic phases in a specimen, especially when the compositions of the phases are similar or their particle sizes are small because the EDS interaction volume is much larger than that of EBSD, and the EDS spectra collected during spatial mapping are generally noisy due to time limitations and the need to minimize sample drift. The backscatter electron (BSE) signal is very sensitive to the local composition due to its atomic number (Z) dependence. BSE imaging is investigated as a complimentary tool to EDS to assist phase segmentation and identification in EBSD through examination of specimens of meteorite, Cu dross, and steel oxidation layers. The results demonstrate that the simultaneous acquisition of EBSD patterns, EDS spectra, and the BSE signal can provide new potential for advancing multiphase material characterization in the scanning electron microscope. KW - Electron backscatter diffraction KW - Energy dispersive x-ray spectroscopy KW - Scanning electron microscopy KW - Multiphase microstructure KW - Phase identification KW - Backscattered electron imaging KW - Meteorite KW - Monte Carlo simulation PY - 2013 DO - https://doi.org/10.1017/S1431927613000305 VL - 19 IS - 4 SP - 929 EP - 941 AN - OPUS4-37895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -